Buried Object Classification from GPR Data by using Second Order Deep Learning Models - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2024

Buried Object Classification from GPR Data by using Second Order Deep Learning Models

Résumé

We propose a new pipeline to classify Ground Penetrating Radar (GPR) images, based upon the use of second-orders statistics computed over convolutional features of a ResNetlike architecture. In particular, the architecture consists in an end-to-end training phase with backpropagation from convolutional filters from layers adapted to Symmetric Positive Definite (SPD) matrices. The developed approach is tested and compared to a shallow network given in the GPR literature and a deep Computer Vision model like ResNet. We show that we outperform these methods when the number of training data is small and when some of them are mislabelled.
Fichier principal
Vignette du fichier
Classif_GPR_SPDNet.pdf (759.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04770269 , version 1 (06-11-2024)

Identifiants

  • HAL Id : hal-04770269 , version 1

Citer

Douba Jafuno, Ammar Mian, Guillaume Ginolhac, Nickolas Stelzenmuller. Buried Object Classification from GPR Data by using Second Order Deep Learning Models. International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, Jul 2024, Athenes, Greece. ⟨hal-04770269⟩
12 Consultations
2 Téléchargements

Partager

More