Robustly Learning Regions of Attraction from Fixed Data - Université Grenoble Alpes
Pré-Publication, Document De Travail Année : 2023

Robustly Learning Regions of Attraction from Fixed Data

Apprentissage robuste de régions d'attraction à partir de données fixées

Résumé

While stability analysis is a mainstay for control science, especially computing regions of attraction of equilibrium points, until recently most stability analysis tools always required explicit knowledge of the model or a high-fidelity simulator representing the system at hand. In this work, a new data-driven Lyapunov analysis framework is proposed. Without using the model or its simulator, the proposed approach can learn a piece-wise affine Lyapunov function with a finite and fixed off-line dataset. The learnt Lyapunov function is robust to any dynamics that are consistent with the off-line dataset, and its computation is based on second order cone programming. Along with the development of the proposed scheme, a slight generalization of classical Lyapunov stability criteria is derived, enabling an iterative inference algorithm to augment the region of attraction.
Fichier principal
Vignette du fichier
lyapunov.pdf (1.73 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04101941 , version 1 (21-05-2023)
hal-04101941 , version 2 (11-09-2024)

Identifiants

Citer

Matteo Tacchi, Yingzhao Lian, Colin N. Jones. Robustly Learning Regions of Attraction from Fixed Data. 2024. ⟨hal-04101941v2⟩
151 Consultations
58 Téléchargements

Altmetric

Partager

More