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Abstract

While stability analysis is a mainstay for control science, especially computing regions of
attraction of equilibrium points, until recently most stability analysis tools always required
explicit knowledge of the model or a high-fidelity simulator representing the system at hand.
In this work, a new data-driven Lyapunov analysis framework is proposed. Without using
the model or its simulator, the proposed approach can learn a piece-wise affine Lyapunov
function with a finite and fixed off-line dataset. The learnt Lyapunov function is robust to
any dynamics that are consistent with the off-line dataset, and its computation is based on
second order cone programming. Along with the development of the proposed scheme, a
slight generalization of classical Lyapunov stability criteria is derived, enabling an iterative
inference algorithm to augment the region of attraction.
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1 Introduction

Stability analysis is a major research topic in control science. For instance, given a closed-loop
control system and its current configuration (initial condition), deciding whether the trajectories
will converge towards a stable equilibrium or not is a crucial problem that control engineers are
required to solve in real time on a regular basis. Among various stability criteria, Lyapunov
analysis [1] plays a key role in this field. In this framework, stability analysis is reformulated
into the search for a Lyapunov function (LF), and all initial conditions of trajectories converging
towards the stable equilibrium are gathered in the so-called region of attraction (RoA), often
approximated from inside with sublevel sets of LFs.

Lyapunov analysis has been widely studied in model-based and data-driven setups, where
the user is assumed to have direct access to the model or a high-fidelity simulator. While a
system model or simulator may not always be available, it is usually possible and much simpler
to measure a finite number of system responses offline. Therefore, stability analysis methods
based on fixed measured data become desirable although often challenging. Motivated by this
need, this work studies Lyapunov analysis based on a given finite set of measurements of the
system response. The proposed approach can learn a piecewise affine (PWA) LF on a compact set
without access to a system model or simulator. The contributions of this work are summarized
as follows:

• We formulate and prove a Lyapunov inference theorem, which generalizes existing Lya-
punov stability analysis methods. This generalization is used to expand a prior inner
estimate of the region of attraction to a larger set.

• We specify our Lyapunov stability criterion for a PWA LF on a compact set, to make it
verifiable locally on this compact set rather than at all points.

• We make the Lyapunov criterion robust to all models that are consistent with the measured
dataset. This criterion is defined on general bounded evaluation function spaces, and has
a convex form for Lipschitz functions.



1 INTRODUCTION 3

• We develop an algorithm to learn a LF, robust to all models that are consistent with the
measured dataset. The proposed algorithm only needs to solve a convex second-order cone
program, regardless of the underlying unknown dynamics’ (non-)linearity.

• We discuss numerical results and properties of the proposed algorithm, mostly focusing on
the improvement of its computational efficiency.

Previous Work

Nonlinear Lyapunov stability analysis has been widely studied, where model-based approaches
and sampling-based approaches form two main categories. In each approach, a Lyapunov candi-
date is optimized or synthesized by verifying the Lyapunov stability conditions. In model-based
approaches, the knowledge of the underlying model is explicitly used in the search of the LF. In
contrast, data-driven approaches train an LF by penalizing the violation of the Lyapunov sta-
bility conditions on a dataset. Even though a standard Monte-Carlo sampling scheme can also
give a probabilistic guarantee [2], it is always preferable to give a strict qualification in stability
analysis. In this case, model-based and most data-driven approaches require explicit knowledge
of the model. In particular, verification of the Lyapunov stability condition usually resorts to
nonlinear optimization or satisfiability modulo theory (SMT) solvers, such as dReal [3]. Note
that when smooth dynamics are considered, one can write the Lyapunov stability condition with
respect to any Lyapunov candidate into an explicit algebraic form (see e.g [4–6]). The SMT
solver is accordingly used to check whether these algebraic inequalities are satisfied up to some
user-defined tolerance [7].

To the best of the authors’ knowledge, the first numerical method to find an LF solves the
Zubov equation [8], which models an LF as the solution to a linear partial differential equation
(PDE). The approximation of this PDE is then solved via a series expansion [8], a collocation
method [9], etc. One main advantage of the model-based approach is that the a-priori knowledge
about the model can be used to reformulate the Lyapunov learning problem into a simpler prob-
lem. When polynomial dynamics are considered, a sum of square (SoS) programming relaxation
can be used to search for polynomial LFs [10] . Due to the nice algebraic properties of poly-
nomials, the SoS framework has been further used to find the region of attraction [11, 12] and
its sparsity structure has been used to improve its scalability [13, 14]. Parallel to the studies in
polynomial dynamics, PWA dynamics are another active area of research interest [15,16], which
comes as a result of the ubiquitous appearance of PWA functions in various controllers, such as
ReLU-neural-network-based controllers and linear MPC [17]. For the PWA setup, optimization
based approaches play a central role, such as linear matrix inequalities [12, 18, 19] and mixed
integer programming [20].

Unlike model-based approaches, sampling-based methods rely on an efficient strategy for
generating informative samples. Counter-example guided inductive synthesis (CEGIS) [21,22] is
a commonly applied concept in many sample-based approaches (see e.g. [19,23,24]) when direct
access to the model or its simulator is available. During the learning process, they iteratively
augment the sample dataset by adding counter examples to the Lyapunov candidate proposed in
the current iteration. These algorithms train the LF by penalizing the violation of the Lyapunov
stability condition on the samples, and they converge when no further counter example can be
generated [5, 23].

The search for an LF is usually confined to a specific function class, such as a generalized
quadratic form [25] or a positive definite kernel regressor [26]. In this work, we will focus on PWA
LFs defined on a compact set. Besides the advantages mentioned in the model-based approach
paragraph, PWA Lyapunov candidates have shown nice interplay with Lipschitz dynamics. In
particular, when the samples of system dynamics are assigned to the vertices of a grid, a robust
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Lyapunov stability condition on each simplex can be verified by only considering a tightened
Lyapunov condition defined on its vertices. This family of methods is called the continuous
piece-wise affine (CPA) method [27, 28]. The CPA method has been extended to more general
problem setups: differential inclusions [29], switched systems [30], etc. In this work, we also
consider Lipschitz dynamics, but we do not assume that the data are located on the vertices.
Therefore, we do not term our method a CPA method to avoid unnecessary confusion. A more
detailed comparison is presented in Section 4.3.

Our method can also be related to [31], which leverages partial knowledge on the system
dynamics (such as bounds on its Lipschitz constant) to learn candidate LFs from data and provide
probabilistic guarantees for this candidate to generalize to unobserved states. Similarly, we use
such knowledge to certify Lyapunov conditions globally, although we choose a robust certification
rather than probabilistic, as we aim at avoiding any false positives. Moreover, while [31] learns
stability certificates, it does not explicitly provide methods for computing the region of attraction,
which is the goal of our contribution. Even closer to our work is the reference [32], where
knowledge on the Lipschitz constant is complemented with bounds on higher order derivatives,
in order to compute Taylor approximations of the dynamics with deterministic error bounds. This
results in polynomial sector conditions and SoS relaxations of Lyapunov constraints. Although
less conservative than our method, this framework resorts to semidefinite programming (SDP),
while we provide certificates computed from second order cone programming (SOCP) problems.

The rest of this paper is organized as follows: Section 2 states the problem setup. In Section 3,
we will first generalize the Lyapunov theorem in Section 3.1, this generalization will later be
used to develop a local Lyapunov condition with PWA Lyapunov candidate in Section 3.2. In
the sequel, Section 4.1 applies this local condition to a set of uncertain function defined by
data, whose robust satisfaction is summarized in Theorem 7. This theorem is later used to
define a convex inequality condition for the class of Lipschitz function in Section 4.2, where the
learning problem will be summarized. A comparison between the proposed learning problem
and other related works are given in Section 4.3. The learnability of the proposed scheme is
studied in Section 5.1, after which the proposed learning problem is recast into an equivalent
form to enable higher computational efficiency in Section 5.2. The general learning algorithm are
summarized in 5.3 with a numerical validation in Section 6. A conclusion wraps up this paper
in Section 7.

Notation: {xi}i∈I is a set indexed by I, and when there is no confusion, we drop the index set
with {xi}. Na denotes the set of positive integer less than a. R+ denotes the set of non-negative
real numbers. 0 is a zero vector. B(x, r) denotes an open euclidean ball centred at x with radius
r. co(X) denotes the convex hull of X ⊂ Rd. Ld(X) is the set of Lipschitz functions from X to
Rd. X \Y := {x ∈ X | x /∈ Y} for all Y ⊂ X. ∥x∥ := (|x1|q + . . .+ |xd|q)1/q denotes the q-norm
of x ∈ Rd for some fixed q ∈ [1,∞] (with convention q = ∞ =⇒ ∥x∥ = max1≤j≤d |xj |), whose
dual norm is denoted by ∥x∥∗. |S| denotes the cardinal of a set S. If X is a topological space,
then int(X), X and ∂X denote its interior, closure and boundary, respectively.

Finally, due to ambiguity in the literature, we indicate our definition of polyhedra and poly-
topes:

• A polyhedron P ⊂ Rd is an intersection of finitely many half spaces: ∃c ∈ N,A ∈ Rc×d, b ∈
Rc such that

P =
{
x ∈ Rd | Ax− b ∈ (R+)

c
}
.

• A polytope is a bounded, finite union of polyhedra (which is not necessarily convex). In
particular, a convex polytope is a bounded polyhedron, and is the convex hull of its vertices.
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2 Learning regions of attraction from data

2.1 Unknown dynamic system, fixed data

In our problem setup, we consider an unknown continuous time dynamic system of dimension
d on a bounded open set X ⊂ Rd:

ẋ = f(x) (1a)

∀t ≥ 0, x(t) ∈ X (1b)

whose known behavior is summarized as follows:

Assumption I.

1. f is Lipschitz continuous, so that the solution to (1) with initial condition x(0) = x0 exists
and is unique, and we denote by x(t|x0) the corresponding flow at time t.

2. f has a single equilibrium point (EP) in X, and this EP is in 0 and is locally asymptotically
stable (LAS).

Assumption I implies that the hypothesis space F for the unknown dynamics f is at most
the space of Lipschitz continuous vector fields: F ⊂ Ld(X) with

Ld(X) :=

{
h : X→ Rd

∣∣∣∣∣ supx̸=y

∥h(x)− h(y)∥
∥x− y∥

<∞

}
.

The goal of this work is to algorithmically learn an inner approximation of the RoA for this LAS
EP:

Problem 1. Find the largest possible set of initial conditions of trajectories converging to 0
when t goes to infinity:

R :=
{
x0 ∈ X

∣∣∣ lim
t→∞

∥x(t|x0)∥ = 0
}
.

Even when a model is available, such task a is hard in practice, see e.g. [33] and the references
therein. When there is no model, some alternative information is needed in order to address
Problem 1, summarized in Assumptions II and III.

Assumption II. A fixed dataset D of size n sampled from system (1) is available:

D := {(xi,f i = f(xi))}ni=1 ⊂ X× Rd.

Assumption II is the only direct observation that we have of the system behavior, and only
covers a finite number of configurations, among the infinite possible samples. Hence, we also
need some additional knowledge to be able to generalize from this dataset D to the whole set
X× f(X).

Assumption III. From the dataset D and side information (Σ), a set-valued map F : X ⇒ Rd

exists, such that for all x ∈ X, F(x) is compact and convex, and it holds that

f(x) ∈ F(x) (2)

Example. The side information (Σ) can take various forms and is essentially a bound on the
complexity of the model f outside of the datapoints xi. Here are some examples of such side
information:



2 LEARNING REGIONS OF ATTRACTION FROM DATA 6

1. Lipschitz bound: ∃M > 0 such that ∀x,y ∈ X,

∥f(x)− f(y)∥ ≤M∥x− y∥.

In such case, the uncertainty set is trivially given by

F(x) =

n⋂
i=1

B(f i,M∥x− xi∥).

2. Hilbert bounds [34]: there is a kernel function κ : X ×X −→ R generating a reproducing
kernel Hilbert space (RKHS) H of real functions over X such that f = (f1, . . . , fd) ∈ Hd,
as well as upper bounds M1, . . . ,Md > 0 such that

∀j ∈ Nd, ∥fj∥H ≤Mj .

In this setting, it is possible to learn a representer f̂ = (f̂1, . . . , f̂d) ∈ Hd for f from the
dataset D, and F can be determined through the following kernel inputs:

K := (κ(xi,xj))
n
i,j=1 ∈ Rn×n,

κ := x 7−→ (κ(x,xi))
n
i=1 ∈ Rn,

P := x 7−→
√
κ(x,x)− κ(x)⊤K−1 κ(x),

for which [34] provides a new uncertainty set for f (denoting [±a] := [−a, a] for a ≥ 0):

F(x) := f̂(x) + P (x)

d∏
j=1

[
±
√

M2
j − ∥f̂j∥2H

]
.

3. Derivative bounds [32]: f ∈ Ck+1(X)d and for j ∈ Nd, α = (α1, . . . , αd) ∈ Nd such that
|α| := α1 + . . .+ αd = k + 1, there is an Mj,α > 0 verifying

∀x ∈ X,

∣∣∣∣∂k+1fj
∂xα

(x)

∣∣∣∣ ≤Mj,α,

where xα := xα1
1 · · ·x

αd

d . Here, [32] resorts to degree k Taylor approximations in ω ∈ X

f̂j(x) =
∑

|α|≤k

cj,α (x− ω)α

f̂(xi) = f i,

which we summarize into f̂ ∈ Fω
D ⊂ R[x]k, to get a polynomial sum-of-squares error bound

∥f(x)− f̂(x)∥2 ≤ σω(x) :=
∑
j,α

M2
j,α

α!
(x− ω)2α,

with α! := α1! · · ·αd!, and end up with the following uncertainty set, parameterized by a
finite set Ω of approximation points :

F(x) =
⋂
ω∈Ω

⋃
f̂∈Fω

D

B
(
f̂(x),

√
σω(x)

)
.

It is worth noticing that when d = 1, the case k = 0, Ω = {x1, . . . ,xn} recovers our first
example as a special case; however, in higher dimension d, the two examples are slightly
different, the former bounding norms while the latter bounds projections. Also, all these
examples can be modified to account for bounded noise f(xi) = f i +wi, P(wi ≤W ) = 1.
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2.2 Some set-theoretical considerations

We have defined our dynamic system (1) only on a bounded set X. Indeed, in the three above
examples, when ∥x∥ goes to infinity, so does the size of the uncertainty set F(x) (because ∥x−xi∥,
P (x) and σω(x) go to infinity), rendering any learning process ineffective. As a result, one can
only aim at certifying stability on a bounded subset of the state space. However, in practice,
such assumption is without loss of generality, as most control systems are designed with security
constraints under the form of bounds on their state variables. In general, outside of these bounds,
the integrity of the system at hand is compromised. For these reasons, we only consider bounded
admissible state set X in which we assume that the desired RoA R is included: R ⊂ X. We also
make an additional assumption on prior knowledge regarding the RoA:

Assumption IV. A compact subset of the RoA:A ⊂ int(R), is already known, with 0 ∈ int(A).

Assumption IV is a slight generalization of Assumption I (which yields an A = {0}), required
for practical learning of the RoA. Generally speaking, A models a conservative prior about the
region of attraction (RoA) of the unknown dynamic system, e.g. deduced from engineering
practice. We stress here that such knowledge can be required in a non-trivial form to learn a
finitely parameterized LF, either in a model-based or data-driven setting, as discussed in [35,36].

3 Piecewise affine set membership for Lyapunov inference

In this section, we first try to augment the prior knowledge of attractivity in A to a larger set
in Section 3.1. This result is refined to a Lyapunov candidate from the class of piece-wise affine
(PWA) functions in Section 3.2.

3.1 Lyapunov inference

Before proceeding to the stability analysis, we introduce three additional concepts on functions
V : Rd −→ R.

Definition 2.

• The strict sub-level set of V with level a ∈ R is

LV
a :=

{
x ∈ Rd | V (x) < a

}
.

• The Clarke generalized gradient of V at a point x ∈ Rd is the set given by

∂CV (x) := co

g ∈ Rd

∣∣∣∣∣∣∣∣
∀ ε > 0,∃ xε ∈ Rd s.t.
∥x− xε∥ < ε,
V is differentiable at xε,
∥g −∇V (xε)∥ < ε

 .

• The Clarke-Lie derivative of V along a set-valued map F : Rd ⇒ Rd at a point x ∈ Rd is

V̇F(x) :=
{
f⊤
xgx

∣∣∣ fx ∈ F(x), gx ∈ ∂CV (x)
}
.

In particular, if there is an f such that for all x it holds F(x) = {f(x)}, we denote

V̇f (x) :=
{
f(x)⊤g

∣∣ g ∈ ∂CV (x)
}
.
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Remark. The Clarke gradient is a generalized gradient in the sense that if V is continuously
differentiable in a neighbourhood of x, then trivially ∂CV (x) = {∇V (x)}, and if V is convex in
a neighborhood of x, then ∂CV (x) coincides with the subdifferential of V .

In [37, Theorem 2.5.1] it is proven that if V is Lipschitz continuous in a neighbourhood of
x, then ∂CV (x) ̸= ∅; in such a case, ∂CV (x) is compact and convex by definition and if F also
takes compact and convex values, it trivially follows that V̇F has the following form:

∀x ∈ Rd, ∃ℓx ≤ ux s.t. V̇F(x) = [ℓx, ux].

Then, we introduce a slight generalization of the Krasovsky-LaSalle invariance principle [38].

Lemma 3. Consider the dynamic system (1) and suppose that there is a Lipschitz continuous
function V : Rd → R s.t.

∀x ∈ X \A, max V̇f (x) < 0. (3)

Then, for all a ∈ R such that LV
a ⊂ X, it holds

∀x0 ∈ LV
a , lim

t→∞
dist

(
x(t|x0),A

)
= 0, (4)

where dist(p,S) = infs∈S ∥p− s∥ denotes the distance between point p ∈ Rd and set S ⊂ Rd.

Remark. The only difference with the original Krasovsky-LaSalle invariance principle is the
relaxation of the original continuous differentiability assumption on V into a Lipschitz continuity
assumption, and accordingly the use of the Clarke-Lie derivative. This slight modification does
not drastically change the proof, thanks to [39, Lemma 2.15] which generalizes the chain rule to
this setting. As usual, the case A = {0} covers standard Lyapunov local asymptotic stability
theorems (constraints on the values of V being replaced by boundedness of X).

Remark. One can immediately notice that if moreover A is as in Assumption IV (which is not
required in Lemma 3), then condition (3) implies that f does not vanish outside of the RoA of
the LAS EP 0. In other words, 0 is implicitly required to be the only equilibrium point in X.
To relax this implicit condition, a slight modification of Lemma 3 can be performed: instead of
condition (3), one can ask for the existence of an a ∈ R such that LV

a ⊂ X and max V̇f (x) < 0
only holds for x ∈ LV

a ∩ (X \A) (instead of for all x ∈ X \A). Then, conclusion (4) would hold
only for such a ∈ R. While allowing for the existence of alternative equilibria outside of LV

a , this
condition is also more difficult to translate into a convex optimization constraint, hence we did
not implement it in our numerical experiments, and focused on the case when X is tailored to
contain no EP other than 0.

In the case of unknown dynamics, condition (3) is impossible to check, as V̇f takes unknown
values. Hence, in our Lyapunov inference theorem we will replace it with a more conservative
but certifiable condition in terms of the uncertainty set F(x) defined in (2).

Theorem 4. Consider the dynamic system (1) together with the set-valued map F defined by (2),
and suppose that there exists a Lipschitz continuous function V : Rd −→ R satisfying

∀x ∈ X \A, max V̇F(x) < 0. (5)

Then, under Assumptions I to IV, for all a ∈ R such that LV
a ⊂ X, it holds LV

a ⊂ R, i.e.

∀x0 ∈ LV
a , lim

t→∞
∥x(t|x0)∥ = 0. (6)
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Proof. It follows from Assumption IV (compact A included in open int(R)) that there exists a
δ > 0 such that, if dist(x,A) < δ, then x ∈ R1. Existence of a τ > 0 such that

dist
(
x(τ |x0),A

)
< δ

follows from the fact that for all x ∈ X, f(x) ∈ F(x), so that V̇f (x) ⊂ V̇F(x) and hence

max V̇f (x) ≤ V̇F(x) < 0 recovers (3) from (5) and we can apply Lemma 3. As a result, using the
semigroup property, it holds

lim
t→∞

∥x(t|x0)∥ = lim
t→∞

∥x(t+ τ |x0)∥

= lim
t→∞

∥x(t|x(τ |x0))∥ = 0.

Remark. The point for working with a neighborhood A of the equilibrium in Theorem 4 is that
this allows us to exclude A from the set on which the Lyapunov condition (5) has to be checked.
Indeed, on such neighborhood the function f becomes vanishingly small, so that in practice,
enforcing condition (3) on a finitely parameterized Lyapunov candidate is more challenging (if
not impossible) in this region of the state space, see e.g. [35, 36].

Moreover, similarly to Lemma 3, Theorem 4 also includes an implicit condition: in order to
allow for the existence of a Lyapunov candidate V satisfying condition (5), i.e.

∀x ∈ X \A, 0 > max V̇F(x) = max
f∈F(x)

g∈∂CV (x)

f⊤g,

F(x) should not contain 0 when x ∈ X\A, because if 0 ∈ F(x) then 0 ∈ V̇F(x) and condition (5)
cannot hold, regardless of V . In particular, considering the fact that F models uncertainty over
f , it is reduced to a point only on the finite dataset, where F(xi) = {f i} (assuming perfect
measurements), and grows in size with the distance to datapoints. Hence, it is very likely that
on a neighbourhood of 0, and given that F(0) = {0}, it will hold 0 ∈ F(x) (this happens for
example in the very simple case of a Lipschitz bound M > 1). This is another justification for
exluding a whole neighbourhood A of 0 in condition (5).

3.2 Piecewise affine Lyapunov function

PWA functions have strong modelling capability because they are dense in the space of continuous
functions with a compact domain [40, Chapter 7.4]. This section will refine Theorem 4 to
Lipschitz continuous PWA Lyapunov candidates. For the sake of simplicity, we further assume

Assumption V. X and A are polytopes.

When a set is not a polytope, it can be inner-approximated by a polytope up to arbitrary
accuracy, thus this assumption will not limit the application of the proposed analysis. Recall
that the definition of polytope used in this paper is not necessarily convex, but rather is a finite
union of polyhedra (Section 2.1).

1take e.g. δ = minx∈A,y∈∂R ∥x − y∥; the min is well-defined as the minimum of a continuous function over
the compact set A× ∂R, whose positivity is given by A ∩ ∂R = ∅.
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We now introduce our Lyapunov candidate under the form of a Lipschitz continuous PWA
function. We first consider an m-piece tessellation of X \A:

X \A =

m⋃
k=1

Yk (7a)

k ̸= k′ =⇒ int(Yk) ∩ int(Yk′) = ∅ (7b)

where the Yk are convex polytopes (in addition we define Y0 = A ∋ 0, not necessarily convex).
For k ∈ {1, . . . ,m}, we denote the vertices of Yk by {yk,l}

νk

l=1 (νk hence denoting the number of
vertices of Yk). Using this structure, a PWA Lyapunov candidate V is defined on X by

∀k ∈ {0, . . . ,m}, x ∈ Yk, V (x) := g⊤k x+ bk . (8a)

Obviously, our Lyapunov candidate V should be continuous on X: for any common vertex
y ∈ Yk ∩Yk′ (i.e. ∃ l ∈ Nνk

, l′ ∈ Nνk′ such that y = yk,l = yk′,l′), the condition

(gk − gk′)⊤y = bk′ − bk (8b)

should hold. Then, V is Lipschitz continuous on X with Lipschitz constant

sup
x ̸=y

|V (x)− V (y)|
∥x− y∥

= max
0≤k≤m

∥gk∥ <∞.

Remark. Regardless of the tessellation (7), system (8) always admits {gk, bk}mk=0 = 0 as a
solution. More specific tessellation methods are discussed later in the paper for which non-trivial
solutions exist.

V can then be extended to the whole of Rd while keeping the same Lipschitz constant, using
Kirszbraun’s theorem [41]. Regarding our PWA Lyapunov candidate, the stability condition (5)
in Theorem 4 can be restated as follows:

Lemma 5. Given the tessellation (7) of X, for x ∈ X \A define the index set

K(x) := {k ∈ Nm | x ∈ Yk}.

Then, any Lipschitz extension of the function V defined by (8) to the whole Rd satisfies the
following condition:

∀x ∈ X, ∂CV (x) = co{gk | k ∈ K(x)}. (9)

Proof. Let x ∈ X \A. If V is differentiable in x, then for any k ∈ K(x) it holds

∂CV (x) = {∇V (x)} = {gk}

(which proves that for any k, k′ ∈ K(x), gk = gk′ and thus by continuity bk = bk′). Else, V is
not differentiable in x, and we need the broader definition of the Clarke gradient:

∂CV (x) = co

g ∈ Rd

∣∣∣∣∣∣∣∣
∀ε > 0,∃xε ∈ Rd s.t.
∥x− xε∥ < ε,
V is differentiable in xε,
∥g −∇V (xε)∥ < ε

 .

In our case, there is an ε > 0 small enough such that ∥x − xε∥ < ε implies the existence of a
k ∈ K(x) with xε ∈ Yk (because X is open, so that x /∈ ∂X). Then, it follows from the previous
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argument that if V is differentiable in xε then ∇V (xε) = gk. Conversely, for any k ∈ K(x) there
is an xε ∈ Yk ∩ B(x, ε) in which V is differentiable, with again ∇V (xε) = gk. This allows to
recast the Clarke gradient in our special case as

∂CV (x) = co

{
g ∈ Rd

∣∣∣∣ ∀ε > 0,∃k ∈ K(x) s.t.
∥g − gk∥ < ε

}
,

which is exactly the set announced in (9).

Proposition 6. Let Assumptions I to V hold, and consider the function V defined by (7), (8).
If V moreover satisfies the following condition

∀k ∈ Nm, x ∈ Yk, f ∈ F(x), f⊤gk < 0 (10)

Then for all a ∈ R such that LV
a ⊂ X, it holds LV

a ⊂ R, i.e.

∀x0 ∈ LV
a , lim

t→∞
∥x(t|x0)∥ = 0. (6)

Proof. Assuming that condition (10) is satisfied, we want to prove (5) in order to apply Theo-
rem 4. Let x ∈ X \A, f ∈ F(x), g ∈ ∂CV (x), and let us prove that f⊤g < 0; closedness of
V̇F(x) will conclude. From Lemma 5, we have access to a θ := (θk)k∈K(x) ∈ [0, 1]K(x) such that∑

k∈K(x)

θk = 1

∑
k∈K(x)

θk gk = g

and hence
f⊤g =

∑
k∈K(x)

θk f
⊤gk︸ ︷︷ ︸
<0

< 0.

Finally, we would wrap up this part by sorting out the logic flow in this theorectical Section 3
again. The ultimate goal is to extend some prior knowledge of RoA (i.e. A) to a larger set LV

a

via PWA continuous function, which is not smooth. Theorem 4 gives this characterization with
respect to a Lipschitz continuous Lyapunov candidate via its Clarke gradient evaluation within
the set X \ A. A specific characterization based on a continuous PWA Lyapunov candidate
is then summarized in Proposition 6. This result reformulates the RoA approximation into a
negativity test on each cell Yk.

Remark. It is noteworthy that, with a fixed tessellation, the parameters of the Lyapunov can-
didate on each affine piece (i.e. gk, bk on Yk) can be uniquely determined by the function
evaluation on the vertices {V (yk,l)}

νk

l=1.
Another main benefit of a fixed tessellation is that it allows a direct control over the model

complexity of the Lyapunov candidate. In particular, consider two Lyapunov candidates V1(x)
and V2(x) with their corresponding partitions {Y1,k} and {Y2,k}. Then, we can state that V1(x)
is a refinement of V2(x) (i.e. V1(x) has a higher degree of modelling capability than V2(x)) if
∀ Y2,k, ∃{Y1,j}j∈Ik

such that ∪jY1,j = Y2,k. As condition (10) is local to each cell, if one cell
Yk violates the assumptions of Proposition 6, then we can refine the model locally by further
partitioning Yk.
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4 Learning robust Lyapunov functions

The developments of the previous section are similar in spirit to set membership methods for
dynamical systems, such as [32,34], although their specific application to computing a region of
attraction is relatively new, and their combination with search spaces made of PWA Lyapunov
candidates as proposed in Section 3 is original. In this section, we further specialize our approach
by leveraging specific structures of the uncertainty set, in order to reach unprecedented scalability
properties by writing the overall learning process as a second order cone program (SOCP).

Subsection 4.1 studies the negativity condition (10) for a general hypothesis space, and Sub-
section 4.2 studies the condition in the most basic hypothesis space, i.e. the Lipschitz function
space.

4.1 Robustly distributing information

The key to certifying that a PWA Lyapunov candidate is indeed an LF in our setting, consists
in verifying the negativity condition (10). This condition can be strengthened for k ∈ Nm into

v⋆k := sup
x∈Yk

max
f∈F(x)

f⊤gk < 0,

whose left hand side is an optimization problem with linear cost f 7−→ f⊤gk. Hence, a natural
approach would be to consider the feasible set

F(Yk) :=
⋃

x∈Yk

F(x) (11)

and ask two questions about it:

1. Is F(Yk) compact and convex? If so, then v⋆k is attained on the set F(Yk)
⋆ made of its

extreme points.

2. Can F(Yk)
⋆ be efficiently parameterized? If so, then it may be possible to compute v⋆k and

test for its sign.

If F : X ⇒ Rd is determined through Hilbert bounds as in [34], then convexity of F(Yk) is very
difficult to decide. In contrast, if F comes from Lipschitz bounds, then it is possible to prove that
F(Yk) is compact and convex. However, even in this simple case, the extreme points F(Yk)

⋆

are difficult to parameterize as soon as n > 1, unless one notices a specific structure on F, which
we will now assume.

Assumption VI. There exists a finite set Ω ⊂ X and a family of set-valued maps Fω : X ⇒ Rd

indexed by ω ∈ Ω, such that for all x ∈ X, it holds

F(x) =
⋂
ω∈Ω

Fω(x). (12a)

and for ω ∈ Ω the following “local” feasible set is compact:

Fω(Yk) :=
⋃

x∈Yk

Fω(x). (12b)

Remark. Assumption VI rules out Hilbert bounds from our framework (in their current form).
However, it still covers derivative bounds as in [32] as well as Lipschitz bounds.
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An intuitive interpretation of Assumption VI would be that the uncertainty on f(x) can
be sequentially reduced using information related to parameterizing points ω ∈ Ω. From this
observation, the information relative to each point ω can be distributed in the learning process,
using the following result.

Theorem 7. Under Assumption VI, for any k ∈ Nm, (10) holds if there exists a map γk : Ω −→
Rd such that ∑

ω∈Ω

γk,ω = gk (13a)∑
ω∈Ω

max
f∈Fω(Yk)

f⊤γk,ω < 0 (13b)

Proof. Let ω ∈ Ω, x ∈ Yk. Then, by Assumption VI, it holds F(x) ⊂ Fω(x), so that taking the
union over all possible x yields F(Yk) ⊂ Fω(Yk). Hence, for any f ∈ F(Yk) it holds

f⊤γk,ω ≤ max
fω∈Fω(Yk)

f⊤
ωγk,ω,

which can be summed over ω ∈ Ω to get

f⊤gk
(13a)
=

∑
ω∈Ω

f⊤γk,ω

≤
∑
ω∈Ω

max
fω∈Fω(Yk)

f⊤
ωγk,ω

and we conclude the proof using (13b).

Remark. The key concept behind Theorem 7 is the decomposition of the uncertainty set F(x)
in (12a). In particular, if Ω = {xi}ni=1 is made of the sampled data points, then the quantity
maxfω∈Fω(Yk) f

⊤
ωγk,ω is related to the uncertainty quantified from one data point, which usually

has an easy-to-evaluate explicit closed solution. In comparison, the explicit solution is usually
not available or difficult to evaluate when the whole dataset D is considered. For example, when
considering Lipschitz bounds, the uncertainty boundary quantified by one data point defines a
shifted cone. However, the uncertainty upper and lower bounds are PWA and non-trivial to
evaluate [42] when the whole dataset D is used. Moreover, it is also reasonable to consider
an RKHS, which underpins various uncertainty quantification methods such as Gaussian process
regression [43] and deterministic error bound methods [34]. All these methods require computing
the inverse of the Gram matrix or solving a second order cone program, which has an easy-to-
evaluate explicit solution only when one data point is considered. The consequence of Theorem 7
is that instead of studying compactness and convexity of the F(Yk), one is reduced to studying
convexity of the Fω(Yk) as well as their extreme points, which can be much simpler.

4.2 A Convex tractable case: Lipschitz bounds

Theorem 7 gives a representation of condition (10), but such a representation remains abstract
and hard to check numerically; for instance, with derivative bounds it holds

Fω(x) =
⋃

f̂∈Fω
D

B
(
f̂(x),

√
σω(x)

)
,
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and although convexity of Fω(Yk) can be deduced from the convexity of Fω
D and the cone of SoS

polynomials, its extreme points remain very difficult to identify, so that using Theorem 7 does
not actually simplify the computations: one still has to solve SDP problems. Thus, we will now
recast this representation under a tractable form, in a specific case. Although we have discussed
that it is possible to consider a more complex side information on top of Lipschitz bounds in
Section 2.1, this section will show that a convex learning problem exists when we consider this
most basic hypothesis. Indeed, a minimal assumption to deduce the general behavior of the
dynamics f on X from local data D, is formulated in terms of bounding the variations of f .

Assumption VII. An upper bound M on the Lipschitz constant of the unknown vector field
f is known:

∃M > 0; ∀x,y ∈ X, ∥f(x)− f(y)∥ ≤M∥x− y∥. (14)

In this case, the following corollary to Proposition 6 and Theorem 7 allows one to drastically
simplify the numerical treatment of constraint (10).

Theorem 8. Let Assumptions I, II, IV, V and VII hold, and consider the function V defined
by (7), (8). For k ∈ Nm, let {yk,l}

νk

l=1 be the set of vertices of Yk, so that

Yk = co{yk,l}
νk

l=1. (15a)

Suppose that ∀k ∈ Nm, there is a set {γi,k}ni=1 ⊂ Rd with

n∑
i=1

γi,k = gk (15b)

and for all l ∈ Nνk
n∑

i=1

f⊤
i γi,k +M∥γi,k∥∗∥xi − yk,l∥ < 0, (15c)

where we recall that there is a q ∈ [1,∞], q′ := q/(q−1) (with conventions 1/∞ = 0 and 1/0 = ∞)
such that for ϕ ∈ Rd, ∥ϕ∥q = |ϕ1|q + . . .+ |ϕd|q and ∥ϕ∥∗q′ = |ϕ1|q

′
+ . . .+ |ϕd|q

′
.

Then, ∀a ∈ R such that LV
a ⊂ X, it holds LV

a ⊂ R, i.e.

∀x0 ∈ LV
a , lim

t→∞
∥x(t|x0)∥ = 0. (6)

Proof. See Appendix A.

Remark. Theorem 8 exploits two features specific to Assumption VII, namely the fact that
Fi(x) is centered at f i (in contrast, with Hilbert or derivative bounds, it is centered at some

approximant f̂(x) of f(x)) and that for all x ∈ X, maxf∈Fi(x) ∥f − f i∥ is upper bounded by
a convex function of x, which attains a maximum on Yk at a vertex yk,l. In comparison, the
shapes of uncertainty sets related to Hilbert or derivative bounds are much more difficult to
analyse.

Theorem 8 implies that, under Assumptions I, II, IV, V and VII, existence of an LF giving
access to a robust inner approximation LV

a of the RoA R of system (1), is obtained as the
consequence of the feasibility of the system of constraints (7), (8), (15). Further assuming that
the tessellation (7) is fixed and recalling again that for ϕ ∈ Rd,

∥ϕ∥ =

 d∑
j=1

|xj |q
1/q

,

this corresponds to:
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• linear (polytopic) constraints if q = 1: ∀j, k, l

n∑
i=1

f⊤
i γi,k +Mγi,j,k

d∑
r=1

|xi,r − yk,l,r| < 0

• second order cone constraints if q = 2: ∀k, l
n∑

i=1

f⊤
i γi,k +M∥γi,k∥ · ∥xi − yk,l∥ < 0.

In contrast, contributions like [32] or [31] resort to the more expensive framework of sum-of-
squares programming, which belongs to the class of semidefinite programming and whose com-
plexity grows quickly with the state space dimension and degree of the considered certificates,
while [23] is based on the nonconvex framework of mixed-integer programming.

Introducing a fixed negativity tolerance ε > 0 as well as slack variables sk,l ∈ R, k ∈ Nm,
l ∈ Nνk

, we replace the strict inequality constraint (15c) with a large inequality constraint, and
learn an LF through solving the following optimization problem.

Problem 9. Find {bk}mk=0 ⊂ R, {γi,k}
1≤k≤m
1≤i≤n ⊂ Rd, g0 ∈ Rd, {{sk,l}νk

l=1}mk=1 ⊂ R solution to
the program

s⋆ε := min

m∑
k=1

νk∑
l=1

sk,l

if yk,l ∈ Y0,

n∑
i=1

γ⊤
i,kyk,l = g

⊤
0 yk,l + b0 − bk (8b)

if yk,l ∈ Yk′ ,

n∑
i=1

(γi,k − γi,k′)⊤yk,l = bk′ − bk (13a)

∀k ∈ Nm, l ∈ Nνk
, sk,l ≥ −ε (16a)

and

n∑
i=1

f⊤
i γi,k +M∥γi,k∥∗∥xi − yk,l∥ ≤ sk,l. (16b)

Optimization problem (16) comes with the following result:

Proposition 10. Under Assumption V and tessellation given by (7), for any f satisfying As-
sumptions I, II, IV, and VII and any optimal solution to Problem 9 satisfying

s⋆ε = −ε
m∑

k=1

νk, (17)

the function V defined for k ∈ Nm, x ∈ Yk by

V (x) =

n∑
i=1

γ⊤
i,kx+ bk (8a+15b)

defines a generalized Lyapunov function, such that for all a ∈ R satisfying LV
a ⊂ X, it holds

LV
a ⊂ R, i.e.

∀x0 ∈ LV
a , lim

t→∞
∥x(t|x0)∥ = 0. (6)
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Proof. s⋆ε = −ε
∑m

k=1 νk in Problem 9 directly implies that for all k ∈ Nm, l ∈ Nνk
, it holds

sk,l = −ε, i.e. constraint (16a) is saturated. Reinjecting in constraint (16b) yields (15c) as
ε > 0. The conclusion then follows directly from Theorem 8.

The implication of this result is strong as it states that under the assumption of Lipschitz dy-
namics, we can learn/validate a robust estimate of the RoA R through convex programming (16)
even when the unknown underlying dynamic system f is nonlinear.

Remark. It is possible to adapt the proposed scheme (16) to the case where the measurements
are contaminated by bounded measurement noise. More specifically, if one has only access to
a dataset D̃ := {(x̃i, f̃ i)}ni=1 ⊂ (Rd)2 and bounds W,W ′ > 0 such that there exists D =
{(xi,f i)}ni=1 ⊂ X × Rd and a set of random variables W = {(wi,w

′
i)}ni=1 ⊂ (Rd)2 satisfying

f(xi) = f i and

x̃i = xi +wi, P(∥wi∥ ≤W ) = 1

f̃ i = f i +w
′
i, P(∥w′

i∥ ≤W ′) = 1

The constraint (16b) is accordingly modified to

n∑
i=1

f⊤
i γi,k + ∥γi,k∥∗

(
M

(
∥yk,l − xi∥+W

)
+W ′

)
≤ sk,l.

For the sake of a clear presentation, we only consider noise-free measurements in the rest of this
work.

4.3 Comparison with related works

We would like to wrap up this subsection by comparing the proposed learning scheme with
other existing methods. In comparison with other PWA LF based methods (see e.g. [27, 29]),
the proposed scheme shows two major differences. First, the location of the samples and the
tessellation of the PWA Lyapunov candidate are decoupled in our scheme. In contrast, in existing
PWA LF based methods, the data are sampled on the vertices of the tessellation (i.e. ∀k, l, ∃i
such that yk,l = xi), therefore, the data locations are usually structural due to the choice of
the tessellation. Second, and this is a consequence of the first point, the robust Lyapunov
stability conditions derived from (5) in the existing methods only consider the model uncertainty
quantified by one data point: for instance, in [29], instead of our condition (15c), the authors
propose to prove exponential stability with the condition f⊤

i gk+Ak∥gk∥1 ≤ −∥xi∥ for i ∈ Nn and
some well-chosen generalization constant Ak (playing the same role as our M), ∥·∥1 denoting the
choice q = 1 for our norm ∥ · ∥. On the contrary, the scheme we propose synthetically makes use
of the uncertainty quantified by each data point while maintaining a convex tractable structure.

Another framework related to the proposed approach is the set-membership method [42]. In
short, the set-membership method consists in looking for a stability certificate that will be a
Lyapunov function for any Lipschitz vector fields f̂ satisfying f̂(x) ∈ F(x) for the uncertainty
set-valued map F from Assumption III. In [44, 45], methods are developped for the special case
d = 1 (in [45] the case d > 1 is deduced through assuming component-wise Lipschitz bound, i.e.
∀j ∈ Nd, ∃Mj > 0 with |f j(x)−f j(y)| ≤Mj∥x−y∥), in which case f(x) ∈ F (x) = [f(x), f(x)]

with PWA envelope functions f and f .
Now, we will show the difference between our approach and standard set membership regard-

ing real-valued functions. To better demonstrate the difference, we consider a specific example
f (Figure 1), whose Lipschitz overestimate is set to M = 1 and the data points are:

{(0, f(0) = −0.4) , (0.3, f(0.3) = −0.5) , (1, f(1) = −0.6)}
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Now, consider an LF candidate V (x) = g x with g = 0.9 within interval [0, 1]. If the evaluation
bounds of the set-membership method are used, the Lyapunov decreasing condition needs to
be examinated in all the sub-intervals generated by the PWA bounds (plotted as two-headed
arrow in Figure 1). These intervals are [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.6], [0.6, 0.7], [0.7, 1];
in all generality, determining such intervals is computationally heavy. Instead, if we hope to
simplify the analysis by only taking one data point into consideration as done in [27,29], none of
the simple models generated by one data point can justify the Lyapunov decreasing condition,
as each cone spanned by a single data point intersects the half space gf(x) ≥ 0 (see black
lines of different markers in Figure 1): the use of the whole dataset is necessary. The proposed
scheme synthesizes the knowledge of simple models deduced from each datapoint via convex
optimization. One optimal solution to the proposed scheme is plotted as a blue line in Figure 1,
which only utilizes the last two points (0.3,−0.5) and (1,−0.6) (i.e. γ1 = 0). This plot shows
that the approach we propose induces a relaxation gap between the bounds it provides and the
tight set-membership bounds; what we obtain in exchange for this lower accuracy is a much
more tractable convex optimization scheme. It is worth noting that, in this example, if we only
consider the left data and the right data point, the Lyapunov deceasing condition will fail even
when the set-membership method is used. In such case, the proposed method is able to search
for the additional data point locations that are relevant to the Lyapunov decreasing condition.
Additionally, this process is done by polynomial time convex optimization algorithms [46]. On
the contrary, even though the set-membership method gives the tightest bound, checking the
Lyapunov decreasing condition with these bounds is NP-hard, as it requires vertex elimination
of the Voronoi cells.

Recently, the set-membership approach was extended by Martin and Allgöwer in [32]. In
their contribution, the authors extend Lipschitz bounds to derivative bounds (see Example in
Section 2.1), that are used to deduce a functional set-membership parameterization, namely they
look for certificates (for dissipativity rather than attractivity) that are consistent with any vector

field f̂ ∈ Fω
D, for some approximation point ω ∈ Rd. The key idea in their methodology is that

Fω
D can be represented in terms of polynomial sums of squares, that are themselves parame-

terized by linear matrix inequalities (LMI). This very general framework competes with other
set membership methods in terms of accuracy, and successfully rids itself of the corresponding
NP-hardness by approximating positivity constraints with LMIs through the celebrated Posi-
tivstellensatz. However, one of the involved LMIs has size 2

(
d+k
d

)
+ d (see Ξi in LMI (8) of [32]),

i.e. combinatorial in the number of state variables and the maximal order of the derivative
bounds, hence preventing the method from scaling to high dimensions. In contrast, the ap-
proach we propose relies on SOCP and LP formulations, that are known to scale much better
than SDP.

To summarize this discussion, the approach we propose can be seen as a trade-off between
computationally efficient methods based on PWA LFs such as [27, 29] on one hand, and more
accurate set-membership based methods as [32, 42, 44, 45] on the other hand. As a result, it
achieves better accuracy and sample-efficiency than the former (see the example illustrated on
Figure 1) while being theoretically more scalable than the latter.

5 Algorithm Development

After the introduction of the Lyapunov learning problem 9, we will discuss its learnability in
Section 5.1. The original learning problem will be recast to an equivalent but numerically more
efficient form in Section 5.2. In the end, the main algorithms are summarized in Section 5.3.
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Figure 1: Comparison between set membership method and the proposed method. The proposed
scheme is evaluated by g̃1 = 0, g̃2 = 0.65, g̃3 = 0.35.
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5.1 Learnability

First, due to the introduction of the slack variables {sk,l}, the learning problem 9 is always
feasible. It is natural to ask the following core question in the limiting case:

Given an RoA prior estimate A, what condition on dataset D should hold to enable learning
the PWA Lyapunov candidate on X \A?

Obviously, it is impossible to answer this question with a sufficient condition, regarding the
arbitrariness of the unknown dynamic system f . However, if we only assume a bound on the
Lipschitz constant of f as in Assumption VII, we can still give an initial check of the learnability
of problem 9, based on the remark we already made on the fact that F(x) should not contain 0
for x ∈ X \A. In order to discuss this necessary condition, we first define

ρi :=
∥f i∥
M

.

We state the necessary condition as follows:

Lemma 11. With tessellation (7) and under Assumptions I, II, IV, V and VII, if solutions to
problem 9 define an LF as in Proposition 10, then it holds

X \A ⊂
n⋃

i=1

B(xi, ρi). (18)

Proof. As we already proved, under our assumptions, the existence of an optimal solution to
problem 9 satisfying condition (17) implies that the Lyapunov condition (10) is satisfied on
X \A, i.e.

∀k ∈ Nm, x ∈ Yk, f ∈ F(x), f⊤gk < 0.

In particular, for all k ∈ Nm, x ∈ Yk, it holds 0 /∈ F(x), otherwise one would get the contradic-
tion 0 = 0⊤gk < 0. Now, from Assumption VII we know that

F(x) =

n⋂
i=1

B(f i,M∥x− xi∥),

so that 0 /∈ F(x) means existence of an i ∈ Nn such that 0 /∈ B(f i,M∥x− xi∥), i.e.

Mρi = ∥f i∥ = ∥f i − 0∥ > M∥x− xi∥,

and hence x ∈ B(xi, ρi). This yields the announced result:

X \A ⊂
m⋃

k=1

Yk ⊂
n⋃

i=1

B(xi, ρi).

Remark. Again, notice that the necessary condition (18) for learnability implies the Borel-
Lebesgue property, i.e. that X \A is compact, and hence that X is bounded, which further
supports our assumption in that direction.
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Lemma 11 shows the connection between learning a PWA LF and the set covering problem,
which was proved to be equivalent to a non-convex semi-infinite problem [47], and thus one
should not try to check the condition in Lemma 11 numerically. Recall a key idea behind the
problem 9: the global analysis on X \A is reduced to the analysis on the vertices. This inspires
us to relax the continuous set covering problem to the covering problem of the vertices and we
state this condition in the following Corrolary:

Corollary 12. With tessellation (7) and under Assumptions I, II, IV, V and VII, if solutions
to problem 9 define an LF as in Proposition 10, then it holds

{yk,l}1≤k≤m
1≤l≤νk

⊂
n⋃

i=1

B(xi, ρi). (19)

This necessary condition (19) can be checked in polynomial time. If this test fails, it means
that there exist a yk,l /∈ ∪ni=1B(xi, ρi), and therefore, the dataset D is not informative enough
to learn a PWA LF by only assuming the Lipschitz condition (14). Accordingly, the learning
process will be aborted. Intuitively, the vertices yk,l /∈ ∪ni=1B(xi, ρi) should suggest the location
where additional samples are required. We leave the investigation about this aspect for future
work.

5.2 Computationally efficient recasting

In this part, we will discuss how we recast the original problem 9 to an equivalent problem that
can be handled numerically more efficiently.
Data Refinement
One main computational bottleneck for the original problem 9 comes from the number of decision
variables. Without loss of generality, we consider an affine piece Yk and look for indices i that
could be removed from Nn without jeopardizing the tessellation validation condition (19). In
other words, we look for i ∈ Nn such that, for all l ∈ Nνk

, yk,l /∈ B(xi, ρi). For such index i, and

for any γ ∈ Rd, it holds ∥xi − yk,l∥ > ρi and hence, using Hölder’s inequality:

f⊤
i γ +M∥γ∥∗∥xi − yk,l∥ > f

⊤
i γ +Mρi∥γ∥∗

= f⊤
i γ + ∥γ∥∗∥f i∥

≥ f⊤
i γ − γ⊤f i = 0.

Hence, giving a nonzero value to the γi,k corresponding to this choice of k and i cannot help
enforcing the strict negative Lyapunov condition (16b), so that it is optimal to fix such γi,k to 0.
Such choice is equivalent to removing the index i from the sum in the Lyapunov condition (16b)

n∑
i=1

f⊤
i γi,k +M∥γi,k∥∗∥xi − yk,l∥ ≤ sk,l.

Hence, we can define the set of data indices relevant to Yk:

Ik :=
{
i ∈ Nn

∣∣ B(xi, ρi) ∩ {yk,l}
νk

l=1 ̸= ∅
}

(20a)

and replace the dataset D = {(xi,f i)}ni=1 with Dk := {(xi,f i)}i∈Ik ⊂ D when working on the
polytopic cell Yk, recasting condition (16b) as∑

i∈Ik

f⊤
i γi,k +M∥γi,k∥∗∥xi − yk,l∥ ≤ sk,l. (20b)



5 ALGORITHM DEVELOPMENT 21

The condition defining the new dataset Dk essentially states that each datapoint should at
least bring useful information to enforce strict negativity on constraint (16b) at one vertex. This
technique can significantly reduce the computational cost. To see this, we consider a homogeneous
tessellation within a unit hypercube centered at 0 within which data points scatter uniformly.
We further assume that the cells of the tessellation are hypercubes with edge width η. Then,
considering a datapoint xi, the ball B(xi, ρi) intersects at most O((ρi/η)d)≪ m hypercubic cells.
Notice that in that specific case, it holds

ρi =
∥f i∥
M

=
∥f i − 0∥

M
≤ M∥xi − 0∥

M
= ∥xi∥ ≤ 0.5,

so that the number of decision variables are reduced to roughly O
(

1
2d

)
of the problem defined

by the whole data set. In the numerical example we consider in Section 6, we observe on average
an 81% reduction in the number of decision variables, which makes the problem tractable on a
Laptop without memory overflow.

Explicit SOCP formulations
When dealing with the euclidean norm (i.e. q = 2), in the numerical implementation, it is critical
to convert the inequality constraint (20b) into a set of second order cone constraints [48]:

sk,l ≥
∑
i∈Ik

f⊤
i γi,k + zi,k,l (21a)

zi,k,l ≥M∥γi,k∥∥yk,l − xi∥, (21b)

where |Ik| auxiliary decision scalar variables {zi,k,l} are introduced per vertex yk,l. More pre-
cisely, the complexity for solving an SOCP scales like O(N +K + L)3.5 where N is the number
of variables, K the cumulated dimension of the cone constraints, and L the number of linear
constraints, while solving an SDP scales like O(N + K2 + L)3.5, where K denotes the size of
the involved LMI. In our case, N , K and L all scale linearly with the sample size n, resp. state
dimension d, resp. number of tessellation vertices ν = ν1+. . .+νm, so that the overall complexity
would be O(P 7) (P ∈ {n, d, ν} being the varying parameter) without the SOCP reformulation,
versus O(P 3.5) with the SOCP recasting.
The Recast Problem
After the above reformulations, one ends up numerically solving the following problem:

Problem 13. Find {{sk,l}νk

l=1}mk=1, {{zi,k,l}
i∈Ik
1≤l≤νk

}mk=1, {bk}mk=0 ⊂ R, {{γi,k}i∈Ik}mk=1 ⊂ Rd,

g0 ∈ Rd solution to

s⋆ε := min

m∑
k=1

νk∑
l=1

sk,l

if yk,l ∈ Y0,
∑
i∈Ik

γ⊤
i,kyk,l = g

⊤
0 yk,l + b0 − bk (8b)

if yk,l ∈ Yk′ ,
∑
i∈Ik

(γi,k − γi,k′)⊤yk,l = bk′ − bk (13a)

∀k ∈ Nm, i ∈ Ik, l ∈ Nνk
, sk,l ≥ −ε (16a)

sk,l ≥
∑
i∈Ik

f⊤
i γi,k + zi,k,l (21a)

and zi,k,l ≥M∥γi,k∥∗∥yk,l − xi∥. (21b)
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Remark. Learning without knowing M : It is possible to consider M as a decision variable,
and determine the largest Lipschitz constant for which an LF can be found given a particular
set of data. More specifically, constraint (21b) is recast to a positive semi-definite constraint by[

MId γi,k

γ⊤
i,k zi,k,l

]
∈ S+ , (23)

where S+ denotes the set of positive semi-definite matrices. However, once this formulation is
used, the resulting optimization problem becomes an SDP and the data refinement technique
proposed at the beginning of this Section 5.2 cannot be applied. Even though the particular spar-
sity structure in (23) can be exploited to improve the computational efficiency, the computational
cost of this optimization still drastically increase in comparison with the SOCP problem 13.

5.3 Algorithms

A first learning scheme is summarized in Algorithm 1. Even though we use a standard, non-
tailored tessellation methodology in algorithm 1, generating a good tessellation is vital but
non-trivial. Existing works mostly focus on the link between a convex liftable tessellation and
the power diagram (see e.g. [49,50]). However, as the LF studied in this paper is not necessarily
convex, hence we leave the study of this topic in the future research and we use the standard
Delaunay triangulation in this work [51].

Algorithm 1

Input: RoA prior A, negativity tolerance −ε, Lipschitz overestimate M
Output: LF V (x), RoA inner estimate R̂ = LV

a

Refine a tessellation {Yk}mk=1 until it satisfies (19)
if tessellation is valid then
Solve optimization problem 13
if Optimal solution satisfies s⋆ε = −ε

∑m
k=1 νk then

Find the largest a such that LV
a ⊂ X

Return RoA estimate R̂ = LV
a

end if
else
Return cannot learn V (x).

end if

Proving that X is the full RoA Up to this point, we only assumed knowledge of a subset A of
the RoA and focused on finding an RoA estimate based on the datasetD and the Lipschitz bound
M , X being the admissible state set in which the considered system should evolve. However,
in some cases, one could define X as the a priori candidate for the RoA estimate. In that case,
one wants to certify that the whole X is equal to the RoA R, by finding a PWA LF V (x) and
level value a ∈ R such that X = LV

a . This is done by adding the following level conditions to
problem 13 (recalling that X is open, i.e. X ∩ ∂X = ∅):

yk,l ∈ ∂X =⇒
∑
i∈Ik

γ⊤
i,kyk,l + bk = a (24a)

yk,l ∈ X =⇒
∑
i∈Ik

γ⊤
i,kyk,l + bk ≤ a− ε. (24b)
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Based on the solution to the resulting problem, it is possible to determine an RoA estimate
using the following Corollary:

Corollary 14. Under Assumption V and tessellation given by (7), for any f satisfying As-
sumptions I, II, IV, and VII, if the solution to problem 13 further satisfies satisfies (17) i.e.
s⋆ε = −ε

∑m
k=1 νk, as well as level condition (24) for some a ∈ R, then X = A i.e.

∀x0 ∈ X, lim
t→∞

∥x(t|x0)∥ = 0.

Proof. Trivially follows from Proposition 10 applied to LV
a

(24)
= X.

With this corollary, we are able to certify whether X is the full RoA, by applying the scheme
summarized in Algorithm 2.

Algorithm 2

Input: RoA prior A, negativity tolerance −ε, Lipschitz overestimate M , set level a
Output: LF V (x)

Refine a tessellation {Yk}mk=1 until it satisfies (19)
if tessellation is valid then
Solve optimization problem 13 with constraint (24)
if Optimal value solution satisfies s⋆ε = −ε

∑m
k=1 νk then

Return
end if

else
Return cannot learn V (x).

end if

It is possible to sequentially decompose the learning of the RoA: in addition to increasing the
size of the RoA prior A, we propose to sequentially increase the size of the RoA candidate X,
i.e. we come up with a sequence (Xr)1≤r≤rmax

of RoA candidates, such that

A ⊂ X1 ⊂ X2 . . . ⊂ Xrmax = X.

Now, at iteration r, we prove that Xr is positively invariant and attracted to 0, after which
we set A = Xr and work on Xr+1; to do so, it is only required to learn the LF on the set
Xr \A, as summarised in Algorithm 3. At the end of the iteration process, and if the algorithm
did not fail, one gets an algorithmic proof that Xrmax

= X = R. If the algorithm failed at
iteration r, then one still gets an algorithmic proof that Xr−1 ⊂ R (with convention X0 = A
at the first iteration). It is noteworthy that, if one needs to recover the whole LF on X \ A,
then it is necessary to impose the continuity condition on the boundary of ∂Xr between the r-th
iteration and the (r + 1)-th iteration, as the tessellation of X \A is the union of tessellations of
the Xr+1 \Xr, so that the continuity condition (8b) applies on the boundary ∂Xr.

6 Numerical Results

In this part, the proposed learning schemes are evaluated in two different examples. In particular,
we will make use of Algorithm 1, 2 and 3 in the first example and use Algorithm 1 in the second
one. All the following results are implemented on a laptop with Intel i7-11800H and 32G memory,
and the Mosek numerical solver is used to get optimal solutions of the SOCP problems.
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Algorithm 3

Input: RoA prior A, RoA candidates (Xr)1≤r≤rmax

Output: LF V (x), RoA inner estimate R̂ = LV
a

r = 1
while {r ≤ rmax} do
Run Algorithm. 2 with X = Xr

if Algorithm 2 failed then
Return cannot learn V (x).

end if
A← Xr

r ← r + 1
end while

6.1 Non Polynomial dynamic system

We consider a two-dimensional nonlinear dynamic system:

ẋ1(t) =− 0.9 sin(x1(t)) cos(x2(t)) + 0.2x1(t)x2(t) + 0.25x2(t)
2

ẋ2(t) =− 1 sin(x2(t))(|x1(t) + 0.2|) + 0.5
x1(t)x2(t)

cos(x2(t))− 0.3x1(t)
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(a) The data used for the learning scheme.
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(b) Underlying dynamics (not used for learning).

Figure 2: Representations of the considered nonpolynomial dynamic system.

We assume that we know an RoA prior A = [−0.1, 0.1]2. A dataset with only 200 samples
within [−1, 1]2 ⊂ R2 is used to learn the underlying LF: the positions {xi} and speeds {f i} of
these samples are plotted in Figure 2a, from which we can observe that this dataset is relatively
sparse in [−1, 1]2. Judging by the speed sample, the dynamic system seems stable within the
box [−0.4, 0.4]2, while stability within the region [−1, 1]2 \ [−0.4, 0.4]2 is unclear because of the
speed samples in the lower right corner in Figure 2a. Hence, we ran sequential space partition
scheme (Algorithm 3). In particular, we first use Algorithm 1 in the region [−0.4, 0.4]2 with
A = [−0.1, 0.1]2. After we justify that [−0.4, 0.4]2 is a positively invariant subset of the RoA,
then we further apply Algorithm 2 to [−1, 1]2 with A = [−0.4, 0.4]2. In both sub-problems,
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the negativity tolerances ε are set to 10−3 and the tessellation are both randomly generated by
Delaunay triangulation [51].

(a) Xs = [−0.1, 0.1]2 ⊂ X = [−0.4, 0.4]2. (b) Learning a RoA estimate within [−1, 1]2.

Figure 3: Visualization of the learnt LFs.

Figure 4: Evaluation of f(x)⊤∂CV (x) on the learnt RoA, the gray triangulation in the back-
ground is the tessellation used to solve Problem 13, while the coloured region in the front is our
RoA estimate.

The learnt Lyapunov function in [−0.4, 0.4]2 is shown in Figure 3a, while the RoA we finally
end up with is shown in Figure 4. Moreover, the LF learnt from Algorithm 2 in A = [−1, 1]2 \
[−0.4, 0.4]2 is shown in Figure 3b. Figure 4 also shows the evaluation of f(x)⊤∂CV (x) with
respect to the underlying dynamic system, whose maximal evaluation is −1.525 × 10−2 < 0, as
expected from an LF. In accordance with our guess, the learnt RoA in Figure 4 cuts off the
lower right corner, because this region does not seem to be stable. To see that, we simulate the
underlying dynamic system by setting the initial states to points in our dataset. The simulated
trajectories are plotted in Figure 2b; please note that these trajectories are not used in the
learning scheme at all.
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6.2 Reverse Time Van Del Pol Oscillator

In this part, we consider the reverse time Van Del Pol oscillator:

ẋ1(t) = −2x2(t)

ẋ2(t) = −0.8x1(t)− 10(x1(t)
2 − 0.21)x2(t) .
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(a) The data used for the learning scheme.
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(b) Simulated trajectories (not used for learning).

Figure 5: The reverse time Van Del Pol oscillator.

We know an a-priori polytopic RoA A, which is plotted in the center of Figure 6b. A
dataset with only 400 samples within [−0.5, 0.5]2 ⊂ R2 is used to learn the underlying LF: the
positions {xi} and speeds {f i} of these samples are plotted in Figure 5a. Similar to what we
did in the last example, we simulate these data forward in Figure 5b, while these trajectories
are not used in the learning scheme. We can observe that both the lower right corner and the
upper left corner in Figure 5b correspond to regions of unstable states. Even with only the
access to the data in Figure 5a, we can not give a clear idea about which region is safe, hence
we apply Algorithm 2 to [−0.5, 0.5]2. In particular, the negativity tolerance ε is set to 10−3

and the tessellation is randomly generated by Delaunay triangulation [51]. The learnt LF and
the corresponding evaluation of f(x)⊤∂CV (x) on the learnt RoA are respectively plotted in
Figure 6a and Figure 6b. In particular, the maximal evaluation of f(x)⊤∂CV (x) on the learnt
RoA is −1.947× 10−2 < 0.

7 Conclusion

The paper proves a variant of a stability theorem with non-smooth Lyapunov functions (LF)
and then implements an algorithm for data-based region of attraction (RoA) estimation of an
unknown dynamic system. Through this process, a theorem for piecewise affine (PWA) LF
computation was proven, robustly distributing the global dataset information and deriving a
convex optimization program for computing such Lyapunov functions.

The originality of the method is that it only requires a fixed dataset to compute an estimate of
the RoA, from which it allows the user to deduce global information from local data and knowl-
edge of the Lipschitz constant of the unknown dynamic system. In more detail, the technique
(1) decouples the PWA representation from the data point locations, and (2) decomposes the
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(a) Visualization of the LF. (b) Evaluation of f(x)⊤∂CV (x) on the learnt RoA.

Figure 6: The Lyapunov function learnt from a Van der Pol dataset.

On Figure 6b, the gray triangulation in the background is the tessellation used to solve
Problem 13, while the coloured region in the front is the RoA estimate. The polytopic hole in
the middle represents the RoA prior A.

corresponding uncertainty set containing the unknown dynamics as an intersection of sets, each
one depending on a single data point, in order to derive a tractable criterion accounting for the
global dataset. Hence, it can be used to study systems whose dynamics cannot be easily sampled
at will, through a relatively simple optimization problem that can be handled with interior point
methods.
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A Proof of Theorem 8

Theorem 8: Let Assumptions I, II, IV, V and VII hold, and consider the function V defined
by (7), (8). For k ∈ Nm, let {yk,l}

νk

l=1 be the set of vertices of Yk, so that

Yk = co{yk,l}
νk

l=1. (15a)

Suppose that ∀k ∈ Nm, there is a set {γi,k}ni=1 ⊂ Rd with

n∑
i=1

γi,k = gk (15b)

and for all l ∈ Nνk
n∑

i=1

f⊤
i γi,k +M∥γi,k∥∗∥xi − yk,l∥ < 0. (15c)

Then, ∀a ∈ R such that LV
a ⊂ X, it holds LV

a ⊂ R, i.e.

∀x0 ∈ LV
a , lim

t→∞
∥x(t|x0)∥ = 0. (6)
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Proof. By Assumption VII, for all x ∈ X, i ∈ Nn, it holds ∥f(x) − f i∥ ≤ M∥x − xi∥, i.e.
f(x) ∈ B(f i,M∥x− xi∥) =: Fi(x). In particular,

f(x) ∈ F(x) =

n⋂
i=1

Fi(x),

so that Assumptions III and VI hold. Hence, according to Proposition 6 and Theorem 7, with
Ω = {xi}ni=1, the proof of our statement boils down to verifying (13b), i.e.

n∑
i=1

max
f∈Fi(Yk)

f⊤γi,k < 0.

Let i ∈ Nn, k ∈ Nm, f ∈ Fi(Yk). By construction, there exists an x ∈ Yk such that f ∈ Fi(x),
i.e. ∥f − f i∥ ≤M∥x− xi∥, and the Hölder inequality ∀ϕ,ψ ∈ Rd, |ϕ⊤ψ| ≤ ∥ϕ∥∗∥ψ∥, yields

f⊤γi,k = f⊤
i γi,k + γ⊤

i,k(f − f i)

≤ f⊤
i γi,k + ∥γi,k∥∗∥f − f i∥

≤ f⊤
i γi,k +M∥γi,k∥∗∥x− xi∥.

Taking the maximum over f ∈ Fi(Yk), one gets

max
f∈Fi(Yk)

f⊤γi,k ≤ f
⊤
i γi,k +M∥γi,k∥∗

(
max
x∈Yk

∥xi − x∥
)
.

It remains to show that
max
x∈Yk

∥xi − x∥ = max
1≤l≤νk

∥xi − yk,l∥,

which follows from the convexity of the objective function x 7−→ ∥xi − x∥ together with the
convexity of Yk: the maximum of the optimization problem on the left hand side is attained on
an extreme point of Yk, i.e. a yk,l. Finally, summing over i yields

n∑
i=1

max
f∈Fi(Yk)

f⊤γi,k ≤ max
1≤l≤νk

n∑
i=1

f⊤
i γi,k

+M∥γi,k∥∗∥xi − yk,l∥
(15c)
< 0.

Remark. If instead of Assumption VII, we suppose that ∥f∥Hd ≤ M for some RKHS H with
kernel κ, then the reasoning given in the Example of Section 2.1 yields an uncertainty set

Fi(x) =
κ(x,xi)

κ(xi,xi)
f i +

√
κ(x,x)− κ(x,xi)2

κ(xi,xi)︸ ︷︷ ︸
Pi(x)

[±µi]

for some fixed vector µi ∈ Rd depending on M and the representer f̂ of f learnt from the single
data {xi,f i} (but not on x), so that in the previous proof one has to replace M∥x − xi∥ with
|κ(x,xi)/κ(xi,xi) − 1| · ∥f i∥ + 2Pi(x)∥µi∥ (using the triangle inequality to bound ∥f − f i∥ for
f ∈ Fi(x) as above). However, the problem here is that this new function of x is not convex: its
maximum is not necessarily attained on a vertex yk,l of Yk, and we would need other arguments
(out of the scope of this article) to obtain a tractable constraint.
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B Assessing conservatism

One can see from the proof of Theorem 7 that replacing (5) with (13) induces some conservatism.
This subsection is devoted to proving that, in the special case of Lipschitz bounds, this conser-
vatism ultimately vanishes when the data points and tessellation vertices form an appropriate
covering of X \A.

Proposition 15. Let V : Rd −→ R be a continuously differentiable LF with V (0) = 0, V > 0
and V̇f < 0 on X \ {0} (which is proved to exist under Assumption I) and suppose that there is
an a ∈ R with A ⊂ LV

a ⊂ X.
Under Assumptions II, IV, V and VII and up to adding samples to our dataset D, V can

be approximated by a continuous PWA function V̂ whose parameters in the sense of (8) are
solution to Problem 9 and consistent with condition (17), so that V̂ defines a generalized LF as
per Proposition 10.

Proof. Let δ > 0. Using the universal approximation property of PWA functions [40, Chapter
7.4], there exists a tessellation (7) and a PWA function V̂ as in (8) such that for all k ∈ {0, . . . ,m},
x ∈ Yk, it holds

|V (x)− g⊤k x− bk| < δ, |V̇f (x)− f(x)⊤gk| < δ. (25a)

We choose δ > 0 small enough such that

β := − max
x∈X\A

V̇f (x)− δ > 0. (25b)

Let η > 0. Up to adding samples to our dataset D and further partitioning the tessellation cells
Yk, we assume that

X \A ⊂
n⋃

i=1

B(xi, η/M) (25c)

∀k ∈ Nm, max
x,y∈Yk

∥x− y∥ < η

M
(25d)

Let k ∈ Nm and x ∈ Yk. By (25c), there exists an ik ∈ Nn such that ∥xik − x∥ < η/M. As a
result, it holds

f⊤
ik
gk ≤ f(x)⊤gk + ∥gk∥∗∥f ik

− f(x)∥
(25a)

≤ V̇f (x) + δ + ∥gk∥∗∥f ik
− f(x)∥

(25b)

≤ ∥gk∥∗∥f ik
− f(x)∥ − β

(14)

≤ M∥gk∥∗∥xik − x∥ − β

(25c)

≤ η∥gk∥∗ − β. (25e)

We use this to define

γi,k =

{
gk if i = ik

0 else.
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Then, it holds for all l ∈ Nνk

n∑
i=1

f⊤
i γi,k +M∥γi,k∥∗∥yk,l − xi∥

= f⊤
ik
gk +M∥gk∥∗∥yk,l − xik∥

(25e)

≤ ∥gk∥∗
(
η +M∥yk,l − xik∥

)
− β

(∗)
≤ 3η∥gk∥∗ − β, (25f)

where (∗) is obtained through the simple decomposition

∥yk,l − xik∥ ≤ ∥yk,l − x∥+ ∥x− xik∥
(25c)

≤ ∥yk,l − x∥+ η/M
(25d)

≤ 2η/M

In particular, setting

η =
ε+ β

3maxk∈Nm
∥gk∥∗

yields, for all k ∈ Nm, l ∈ Nνk
,

n∑
i=1

f⊤
i γi,k +M∥γi,k∥∗∥yk,l − xi∥

(25f)

≤ −ε

so that our choice for {bk}mk=0, {γi,k}
1≤k≤m
1≤i≤n , g0 and {{sk,l}νk

l=1}mk=1 = {−ε} yields a feasible
solution to Problem 9.
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