Evaluation of Regularization-based Continual Learning Approaches: Application to HAR - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2023

Evaluation of Regularization-based Continual Learning Approaches: Application to HAR

Résumé

Pervasive computing allows the provision of services in many important areas, including the relevant and dynamic field of health and well-being. In this domain, Human Activity Recognition (HAR) has gained a lot of attention in recent years. Current solutions rely on Machine Learning (ML) models and achieve impressive results. However, the evolution of these models remains difficult, as long as a complete retraining is not performed. To overcome this problem, the concept of Continual Learning is very promising today and, more particularly, the techniques based on regularization. These techniques are particularly interesting for their simplicity and their low cost. Initial studies have been conducted and have shown promising outcomes. However, they remain very specific and difficult to compare. In this paper, we provide a comprehensive comparison of three regularization-based methods that we adapted to the HAR domain, highlighting their strengths and limitations. Our experiments were conducted on the UCI HAR dataset and the results showed that no single technique outperformed all others in all scenarios considered.
Fichier principal
Vignette du fichier
Evaluation of Regularization-based Continual Learning Approaches Application to HAR.pdf (595.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04080925 , version 1 (25-04-2023)

Identifiants

Citer

Bonpagna Kann, Sandra Castellanos-Paez, Philippe Lalanda. Evaluation of Regularization-based Continual Learning Approaches: Application to HAR. 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Mar 2023, Atlanta, United States. ⟨hal-04080925⟩
23 Consultations
55 Téléchargements

Altmetric

Partager

More