Investigating the Impact of Gender Representation in ASR Training Data: a Case Study on Librispeech - Université Grenoble Alpes Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Investigating the Impact of Gender Representation in ASR Training Data: a Case Study on Librispeech

Résumé

In this paper we question the impact of gender representation in training data on the performance of an end-to-end ASR system. We create an experiment based on the Librispeech corpus and build 3 different training corpora varying only the proportion of data produced by each gender category. We observe that if our system is overall robust to the gender balance or imbalance in training data, it is nonetheless dependant of the adequacy between the individuals present in the training and testing sets.
Fichier principal
Vignette du fichier
garnerin-etal-camera-ready.pdf (247 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03472117 , version 1 (09-12-2021)

Identifiants

Citer

Mahault Garnerin, Solange Rossato, Laurent Besacier. Investigating the Impact of Gender Representation in ASR Training Data: a Case Study on Librispeech. 3rd Workshop on Gender Bias in Natural Language Processing, Aug 2021, Online, France. pp.86-92, ⟨10.18653/v1/2021.gebnlp-1.10⟩. ⟨hal-03472117⟩
283 Consultations
466 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More