Monographs, a Category of Graph Structures - Université Grenoble Alpes Accéder directement au contenu
Chapitre D'ouvrage Année : 2021

Monographs, a Category of Graph Structures

Thierry Boy de La Tour
  • Fonction : Auteur
  • PersonId : 1022935

Résumé

Does a graph necessarily have nodes? May an edge be adjacent to itself and be a self-loop? These questions arise in the study of graph structures, i.e., monadic many-sorted signatures and the corresponding algebras. A simple notion of monograph is proposed that generalizes the standard notion of directed graph and can be drawn consistently with them. It is shown that monadic many-sorted signatures can be represented by monographs, and that the corresponding algebras are isomorphic to the monographs typed by the corresponding signature monograph. Monographs therefore provide a simple unifying framework for working with monadic algebras. Their simplicity is illustrated by deducing some of their categorial properties from those of sets.
Fichier principal
Vignette du fichier
wadt-final.pdf (411.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03430250 , version 1 (16-11-2021)

Identifiants

Citer

Thierry Boy de La Tour. Monographs, a Category of Graph Structures. Recent Trends in Algebraic Development Techniques, 12669, Springer International Publishing, pp.54-74, 2021, Lecture Notes in Computer Science, ⟨10.1007/978-3-030-73785-6_4⟩. ⟨hal-03430250⟩
41 Consultations
137 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More