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Monographs, a Category of Graph Structures

Thierry Boy de la Tour

CNRS and University Grenoble Alpes, LIG Lab. Grenoble, France,
thierry.boy-de-la-tour@imag.fr

Abstract. Does a graph necessarily have nodes? May an edge be ad-
jacent to itself and be a self-loop? These questions arise in the study
of graph structures, i.e., monadic many-sorted signatures and the cor-
responding algebras. A simple notion of monograph is proposed that
generalizes the standard notion of directed graph and can be drawn con-
sistently with them. It is shown that monadic many-sorted signatures
can be represented by monographs, and that the corresponding algebras
are isomorphic to the monographs typed by the corresponding signature
monograph. Monographs therefore provide a simple unifying framework
for working with monadic algebras. Their simplicity is illustrated by de-
ducing some of their categorial properties from those of sets.
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1 Introduction

Many different notions of graphs are used in mathematics and computer science:
simple graphs, directed graphs, multigraphs, hypergraphs, etc. One favourite
notion in the context of logic and rewriting is that also known as quivers, i.e.,
structures of the form pN,E, s, tq where N,E are sets and s, t are functions from
E (edges) to N (nodes), identifying the source and target tips of every edge
(or arrow). One reason for this is that the category of quivers is isomorphic to
the category of Σg-algebras, where Σg is the signature with two sorts nodes

and edges and two operator names src and tgt of type edges Ñ nodes. In
conformity with this tradition, by graph we mean quiver throughout this paper.

In order to conveniently represent elaborate data structures it is often nec-
essary to enrich the structure of graphs with other objects: nodes or edges may
be labelled with elements from a fixed set, or with the elements of some algebra,
or graphs may be typed by another graph (i.e., a graph comes with a morphism
from itself to this other graph, considered as its type). An interesting example
can be found in [4] with the notion of E-graphs, since some of these new objects
are also considered as edges or nodes. More precisely, an E-graph is an algebra
whose signature Σe can be represented by the following graph:

edgesg nodesg

edgese edgesn

nodesv

srcg

tgtgsrce srcn

tgte tgtn



The names given to the sorts and operators help to understand the structure
of the Σe-algebras: the edgesg relate the nodesg among themselves, the edgesn
relate the nodesg to the nodesv, and the edgese relate the edgesg to the nodesv.
These extra edges allow values (elements of nodesv) to be attached to edges and
nodes of the inner graph. But then we see that in E-graphs some edges can
be adjacent to other edges. This is non standard, but we may still accept such
structures as some form of graph, if only because we understand how they can
be drawn.

Hence the way of generalizing the notion of graphs seems to involve a gener-
alization of the signature of graphs considered as algebras. This path has been
followed by Michael Löwe in [7], where a graph structure is defined as a monadic
many-sorted signature. Indeed in the examples above, and in many examples
provided in [7], all operators have arity 1 and can therefore be considered as
edges from their domain to their range sort. Is this the reason why they are
called graph structures? But the example above shows that, if Σe-algebras are
interpreted as graphs of some form, these are very different from the graph Σe.
Besides, it is not convenient that our understanding of such structures should be
based on syntax, i.e., on the particular names given to objects in the signature.

Furthermore, it is difficult to see how the algebras of some very simple
monadic signatures can be interpreted as graphs of any form. Take for instance
Σg and reverse the target function to tgt : nodes Ñ edges. Then there is a
symmetry between the sorts nodes and edges, which means that in an algebra
of this signature nodes and edges would be objects of the same nature. Is this
still a graph? Can we draw it? Worse still, if the two sorts are collapsed into one,
does it mean that a node/edge can be adjacent to itself?

We may address these problems by restricting graph structures to some class
of monadic signatures whose algebras are guaranteed to behave in an orthodox
way, say by exhibiting clearly separated edges and nodes. But this could be prone
to arbitrariness, and it would still present another drawback: that the notion of
graph structure does not easily give rise to a category. Indeed, it is difficult to
define morphisms between algebras of different signatures, if only because they
can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction be-
tween nodes and edges, to gather them all in a single carrier set and to rely on a
unique function to distinguish them. For this reason, the resulting structures are
called monographs. The definitions of monographs and their morphisms, given
in Section 3, are thus quite simple although for reasons that will only be made
clear in Section 5 we use sequences of ordinal length, defined in Section 2.

Prior to examining their mathematical properties, we show in Section 4 that
these structures deserve to be considered as “graphs” since they can be repre-
sented by drawings, provided of course that they are finite (in a strong sense).
In particular, such drawings correspond to the standard way of drawing a graph,
for those monographs that can be identified with standard graphs.

The relationship between monographs and graph structures (monadic sig-
natures) is explored in Section 5, using relevant notions from category theory



defined in Section 2. This gives rise to an isomorphism-dense embedding of mono-
graphs into many-sorted monadic signatures, that will expose a fundamental dif-
ference between them. This result is used in Section 6 to exhibit isomorphisms
between the categories of (partitioned) algebras of all graph structures and all
slice categories of monographs, i.e., the categories of typed monographs.

As a result of their simplicity the category of monographs and some of its sub-
categories can easily be shown to share a number of properties with Graphs, as
illustrated in Section 7. Concluding remarks are given in Section 8. The missing
proofs can be found in [3].

2 Notations and Definitions

For any sets A, B, any relation r Ď AˆB and any subset X Ď A, we write rrXs
for the set ty P B | x P X ^ px, yq P ru. For any x P A, by abuse of notation we
write rrxs for rrtxus. We write r´1 for the relation tpy, xq | px, yq P ru Ď B ˆA.
If r is functional we write rpxq for the unique element of rrxs, and if q Ď B1ˆC
is also functional for sets B1 and C such that rrAs Ď B1, we write q ˝ r for the
functional relation tpx, qprpxqqq P Aˆ C | x P Au.

A function f : AÑ B is a triple pA, r,Bq where A and B are sets, respectively
called the domain and codomain of f , and r Ď A ˆ B is a functional relation.
Hence A must be the set tx | px, yq P ru and B may be any superset of the
image rrAs, also denoted f rAs (and generally f rXs and fpxq stand for rrXs and
rpxq respectively). If A “ ∅ and the codomain B can be determined from the
context then we write ε for f “ p∅,∅, Bq. If g “ pB, q, Cq is a function, then

g ˝ f
def
“ pA, q ˝ r, Cq. We may also compose a functional relation with a function,

that then denotes its underlying functional relation, so that q ˝ f “ g ˝ r “ q ˝ r.
More generally, any object and its obvious underlying object will be written

similarly, i.e., the forgetful functor will be omitted, whenever the ambiguity can
easily be lifted from the context. Category theoretic concepts and notations will
be consistent with [1], unless stated otherwise. In particular, idA denotes the
identity morphism of the object A in any category, except in Sets where it
is denoted IdA (the identity function of A) as a way of reminding the reader
that A is a set. In Sets the standard product ˆ, projections π1 and π2 and
coproduct ` are used. For functional relations f , g with the same domain A, let
xf, gypxq

def
“ pfpxq, gpxqq for all x P A; if f : AÑ B and g : AÑ C are functions

then xf, gy : A Ñ B ˆ C is the unique function such that π1 ˝ xf, gy “ f and
π2 ˝ xf, gy “ g.

Isomorphism between objects in a category, or between categories, is denoted
by the symbol ». For any two categories A and B, a functor F : A Ñ B is
faithful (resp. full) if F is injective (resp. surjective) from the set of A-morphisms
from X to Y to the set of B-morphisms from FX to FY , for all A-objects X
and Y . If F is faithful and injective on objects, then it is an embedding. F is
isomorphism-dense if for every B-object Y there exists an A-object X such that
FX » Y . Categories A and B are equivalent, written A u B, if there is a full,
faithful and isomorphism-dense functor from one to the other.



For any object T of A, the slice category1 A{T has as objects the morphisms
of codomain T of A, as morphisms from object f : AÑ T to object g : B Ñ T
the morphisms k : A Ñ B of A such that g ˝ k “ f , and the composition of
morphisms in A{T is defined as the composition of the underlying morphisms
in A. T is a terminal object of A if for every object A of A there is a unique
f : AÑ T . It is easy to see that idT is a terminal object of A{T , and that if T
is a terminal object of A then A » A{T .

Since edges will have arbitrary lengths, including infinite ones, we use the
notion of ordinal and refer to [11] for their properties. An ordinal is a set α
such that every element of α is a subset of α, and such that the restriction of
the membership relation P to α is a strict well-ordering of α (every non empty
subset of α has a minimal element). Every member of an ordinal is an ordinal,
and we write λ ă α for λ P α. For any two ordinals α, β we have either α ă β,
α “ β or α ą β. Every ordinal α has a successor αYtαu, denoted α`1. Natural
numbers n are identified with finite ordinals, so that n “ t0, 1, . . . , n ´ 1u and
ω “ t0, 1, . . . u is the smallest infinite ordinal.

Definition 2.1 (E-sequences s of length λ, elements sι, x | s). For any
set E and ordinal λ, an E-sequence s of length λ is an element of Eλ, i.e., a
function s : λÑ E. For any s P Eλ and ι ă λ, the image spιq is written sι. If λ
is finite and non zero then s can be described as s “ s0 ¨ ¨ ¨ sλ´1. For any x P E
we write x | s and say that x occurs in s if there exists ι ă λ such that sι “ x.

Take for instance E “ tx, yu, then s “ xyx describes the E-sequence of length
3 “ t0, 1, 2u such that s0 “ s2 “ x and s1 “ y. We have x | xyx and y | xyx.

Note that there is no set of all E-sequences, hence the following notions.

Definition 2.2 (sets Eăα, functions făα). For any set E and ordinal α, let

Eăα
def
“

Ť

λăαE
λ. For any set F and function f : E Ñ F , let făα : Eăα Ñ Făα

be the function defined by făαpsq
def
“ f ˝ s for all s P Eăα.

Thus s “ xyx is an element of Eă4, Eă5. . . but not of Eă3 “ E0 Y E1 Y E2.
If f : E Ñ E is the function that swaps x and y (f “ px yq in cycle notation),
then fă4psq0 “ pf ˝ sq0 “ fps0q “ y, etc., hence fă4psq “ yxy.

We have Eă0 “ ∅ and Eă1 “ E0 “ tεu, i.e., the function ε (with codomain
E) is the only E-sequence of length 0. It is obvious that for any s P Eăα and
any ordinal β ě α, we have s P Eăβ and făβpsq “ făαpsq. If f : E Ñ F and
g : F Ñ G then pg ˝ fqăα “ găα ˝ făα.

If s and s1 are respectively E- and F -sequences of length λ, then they are
both functions with domain λ hence there is a function xs, s1y of domain λ. Thus
xs, s1y is an pEˆF q-sequence of length λ, and then πăα1 pxs, s1yq “ π1 ˝xs, s

1y “ s
and similarly πăα2 pxs, s1yq “ s1 for all α ą λ.

If f : E Ñ F and g : E Ñ G then xf, gy : E Ñ F ˆG, hence for all s P Eăα

of length λ ă α we have xf, gyăαpsq “ xf, gy˝s “ xf ˝s, g˝sy “ xfăαpsq, găαpsqy
is an pF ˆGq-sequence of length λ.

1 This is called the comma category of A over T in [5, Definition 4.19], and the category
of objects over T in [1, Exercise 3K]. We adopt the terminology and notation of [4].



3 Categories of Monographs

We may now define the structure of monographs and some related notions. These
definitions will be illustrated by a running example and will be followed by a
number of basic facts on monographs and a comparison with graphs.

In graphs, edges are arbitrary objects to which are associated two arbitrary
objects called nodes. We may thus associate to each edge a sequence of nodes
of length 2. In monographs, the corresponding sequences may contain arbitrary
edges and have arbitrary lengths.

Definition 3.1 (monographs, grade, edges Ea, length `apxq, trace trpAq).
For any ordinal α, an α-monograph A is a pair pE, aq where E is a set whose
elements are called edges of A, and a Ď EˆEăα is a functional relation, called
the map of A. A pair A “ pE, aq is a monograph if it is an α-monograph for
some ordinal α; we then say that α is an ordinal for A. The grade of A is the
smallest ordinal for A. Monographs will usually be denoted by upper-case letters
(A, B, . . . ), their map by the corresponding lower-case letter (a, b, . . . ) and
their set of edges Ea, Eb, . . .

The length `apxq of an edge x P Ea is the length of apxq, i.e., the unique

ordinal λ such that apxq P Eλa. The trace of A is the set trpAq
def
“ `arEas. For any

set O of ordinals, an O-monograph2 A is a monograph such that trpAq Ď O.

Take for instance the monographA “ ptx, yu, aq where a “ tpx, xyxq, py, yxyqu
(i.e., apxq “ xyx and apyq “ yxy), then A is a 4-monograph and more precisely a
t3u-monograph since trpAq “ t3u, but A is not a 3-monograph, hence the grade
of A is 4.

A monograph A is essentially defined by its map a, since Ea “ tx | px, yq P au.
But a is only a functional relation and not a function; there is no codomain
to artificially separate monographs that have the same map. This means in
particular that any α-monograph is a β-monograph for all β ě α. It is easy to
see that there always exists an ordinal for any two monographs, and indeed for
any set of monographs (e.g. the sum of their grades).

Definition 3.2 (adjacency, self-loops, nodes Na, standard monographs).
For any monograph A and edges x, y P Ea, x is adjacent to y if y | apxq. A
self-loop is an edge x that is adjacent only to x, i.e., such that apxq is an txu-
sequence. A node is an edge of length 0, and the set of nodes of A is written Na.
A is standard if apxq is a Na-sequence for all x P Ea.

We see on the running example that apxq “ xyx, hence x is adjacent to y and
to itself, but is not a self-loop. Similarly, apyq “ yxy yields that y is adjacent to
x and to itself, but is not a self-loop. A has two edges but no nodes, hence A is
not standard.

A monograph A is not normally defined by its adjacency relation y | apxq on
edges, since the sequences apxq may not be uniquely determined by this relation.

2 Note that any ordinal α is a set of ordinals, and that a monograph A is an α-
monograph iff trpAq Ď α.



The adjacency relation may not be symmetric: a node is never adjacent to any
edge, while edges may be adjacent to nodes.

Definition 3.3 (morphisms of monographs). A morphism f from mono-
graph A “ pEa, aq to monograph B “ pEb, bq, denoted f : A Ñ B, is a function
f : Ea Ñ Eb such that făα ˝ a “ b ˝ f , where α is any3 ordinal for A.

Building on the running example, we consider the function f “ px yq from Ea
to Ea, we see that fă4 ˝ apxq “ fă4pxyxq “ yxy “ apyq “ a ˝ fpxq and similarly
that fă4 ˝ apyq “ fă4pyxyq “ xyx “ apxq “ a ˝ fpyq, hence fă4 ˝ a “ a ˝ f
and f is therefore a morphism from A to A. Since f ˝ f “ IdEa is obviously the
identity morphism of A then f is an isomorphism.

The length of edges are preserved by morphisms: if f is a morphism from A
to B then for all x P Ea, `bpfpxqq is the length of the Eb-sequence b˝fpxq “ făα˝
apxq, whose length is the same as the Ea-sequence apxq, i.e., `apxq “ `bpfpxqq.
Hence trpAq Ď trpBq, and the equality holds if f is surjective. This means that
if B is an O-monograph then so is A. This also means that the grade of B is at
least that of A, hence that every ordinal for B is an ordinal for A.

Given morphisms f from A to B and g from B to C, we see that g ˝ f is a
morphism from A to C by letting α be an ordinal for B, so that

pg ˝ fqăα ˝ a “ găα ˝ făα ˝ a “ găα ˝ b ˝ f “ c ˝ g ˝ f.

Definition 3.4 (categories of monographs). Let MonoGr be the cate-
gory of monographs and their morphisms. Let SMonoGr be its full subcat-
egory of standard monographs. For any set O of ordinals, let O-MonoGr
(resp. O-SMonoGr) be the full subcategory of O-monographs (resp. standard
O-monographs).

A monograph A is finite if Ea is finite. Let FMonoGr be the full subcategory
of finite ω-monographs.

It is customary in Algebraic Graph Transformation to call typed graphs the
objects of Graphs{G, where G is a graph called type graph, see e.g. [4]. A type
graph is therefore seen as the specification of a category of typed graphs. In
particular, the terminal graph Gt specifies the whole category of graphs since
Graphs » Graphs{Gt. We will extend this terminology to monographs and
refer to the objects of MonoGr{T as the monographs typed by T . The mono-
graph T is then considered as a type monograph and hence as a specification for
a category of typed monographs.

It is obvious from the above that for any set O of ordinals, if T is an O-
monograph then MonoGr{T “ O-MonoGr{T . Similarly, if f : AÑ B then

f´1rNbs “ tx P Ea | `bpfpxqq “ 0u “ Na,

hence if b ˝ fpxq is a Nb-sequence for some x P Ea then for all ι ă `apxq,

fpapxqιq “ pf ˝ apxqqι “ pf
ăαpapxqqqι “ pf

ăα ˝ apxqqι “ pb ˝ fpxqqι P Nb,

3 Imposing the grade of A for α here would be a useless constraint. Note that the
equation făα

˝ a “ b ˝ f holds for all ordinals α for A iff it holds for one.



hence apxqι P Na and apxq is therefore a Na-sequence. Thus A is standard when-
ever B is standard. This proves that for any standard monograph (resp. standard
O-monograph) T we have MonoGr{T “ SMonoGr{T (resp. MonoGr{T “
O-SMonoGr{T ).

The introduction of the present section suggests a similitude between graphs
and standard t0, 2u-monographs. It is actually easy to define a functor M :
Graphs Ñ t0, 2u-SMonoGr by mapping any graph G “ pN,E, s, tq to MG “
pN`E, gq where gpxq “ ε for all x P N and gpeq “ speqtpeq for all e P E (and sim-
ilarly graph morphisms are transformed into morphisms of monographs through
a coproduct of functions). It is easy to see that M is an equivalence of categories4.
This means that for any graph G we have Graphs{G u MonoGr{MG, hence
that typed graphs can be represented as typed monographs.

4 Drawing Monographs

Obviously we may endeavour to draw a monograph A only if Ea is finite and
if its edges have finite lengths, i.e., if A is a finite ω-monograph. If we require
that any monograph MG should be drawn as the graph G, then a node should
be represented by a bullet and an edge of length 2 by an arrow joining
its two adjacent nodes. But generally the adjacent edges may not be nodes and
there might be more than 2 of them, hence we adopt the following convention:
an edge e of length at least 2 is represented as a sequence of connected arrows
with an increasing number of tips

x0 x1 x2 x3

(where apeq “ x0x1x2x3 ¨ ¨ ¨ ) and such that any arrow should enter xi at the
same angle as the next arrow leaves xi. This is important when xi is a node
since several adjacent edges may traverse the corresponding bullet, and they
should not be confused. For the sake of clarity we will also represent symmetric
adjacencies by a pair of crossings rather than a single one, e.g., if apeq “ xe1y
and ape1q “ xey, where x and y are nodes, the drawing may be

but not

It is sometimes necessary to name the edges in a drawing. We may then
adopt the convention used for drawing diagrams in a category: the bullets are
replaced by the names of the corresponding nodes, and arrows are interrupted
to write their name at a place free from intersection, as in

x y
e e1

Note that no confusion is possible between the names of nodes and those of other
edges, e.g., in
4 This can be seen as a consequence of Corollary 6.8 below and of the isomorphism

between Graphs and the category of Σg-algebras.



x

y

z

it is clear that x and z are nodes since arrow tips point to them, and that y is
the name of an edge of length 3.

As is the case of graphs, monographs may not be planar and drawing them
may require crossing edges that are not adjacent; in this case no arrow tip
is present at the intersection and no confusion is possible with the adjacency
crossings. However, it may seem preferable in such cases to erase one arrow in

the proximity of the other, as in .
There remains to represent the edges of length 1. Since apeq “ x is standardly

written a : e ÞÑ x, the edge e will be drawn as

x

In order to avoid confusion there should be only one arrow out of the thick dash,
e.g., if apeq “ e1 and ape1q “ ex where x is a node, the drawing may be

but not

e

e1

since this last drawing may be interpreted as the monograph ape1q “ x and
apeq “ e1e1, that is not isomorphic to the intended monograph.

With these conventions it is only possible to read a drawing of any finite
ω-monograph A as the monograph A itself if all edges are named in the drawing,
or as some monograph isomorphic to A otherwise. Note that this would not be
true if the map a was a function rather than a functional relation, because its
codomain Eăαa is not pictured. It would of course be possible to add the ordinal
α to the drawing, but then would it still qualify as a drawing?

Note that the drawing of a graph or of a standard t0, 2u-monograph can be
read either as a graph G or as a monograph A, and then MG » A.

Possible drawings for the self-loops of length 1 to 4 are given below.

We may also draw typed monographs, i.e., monographs A equipped with a
morphism f from A to a monograph T , considered as a type. Then every edge
e P Ea has a type fpeq that can be written at the proximity of e. For instance,
let T be the monograph

uv



then a monograph typed by T is drawn with labels u and v as in

u

u

v

v
vu

u

Of course, knowing that f is a morphism sometimes allows to deduce the
type of an edge, possibly from the types of adjacent edges. In the present case,
indicating a single type would have been enough to deduce all the others.

5 Monadic Signatures as Monographs

As mentioned in Section 1, graph structures, i.e., monadic many-sorted signa-
tures, can be represented as graphs. More precisely, there is an obvious isomor-
phism between the category Graphs and the category of monadic signatures
defined below5.

Definition 5.1 (monadic signatures). A (monadic) signature is a function
Σ : Ω Ñ S ˆ S; the elements of its domain Ω, that may be written Σop, are
called operator names and the elements of S, that may be written Σsrt, are called
sorts. Σ is finite if both Ω and S are finite. Let Σds

def
“ π1 ˝Σ and Σrs

def
“ π2 ˝Σ,

then Σdspoq and Σrspoq are respectively the domain and range sorts of o P Ω.
A morphism m from signature Σ to signature Σ1 is a pair m “ pmop,msrtq

of functions, where mop : Σop Ñ Σ1op and msrt : Σsrt Ñ Σ1srt, such that

Σ1 ˝mop “ pmsrt ˆmsrtq ˝Σ.

Let idΣ
def
“ pIdΣop

, IdΣsrt
q and given two morphisms m : Σ Ñ Σ1 and n : Σ1 Ñ

Σ2, let n ˝m
def
“ pnop ˝mop, nsrt ˝msrtq; then idΣ : Σ Ñ Σ and n ˝m : Σ Ñ Σ2

are morphisms. Let MonSig be the category of monadic signatures and their
morphisms.

The obvious isomorphism from MonSig to Graphs maps every monadic
signature Σ : Ω Ñ S ˆ S to the graph pS,Ω,Σds, Σrsq. But we have seen in
Section 1 on E-graphs that this representation of the monadic signature Σe bears
no relation with the expected graphical representations of E-graphs. It would be
more natural to represent Σe as an E-graph, or more precisely as a monograph
whose drawing corresponds to that of an E-graph.

Since the imageΣpΩq is a subset of SˆS, it can be viewed as a binary relation
on S, hence there exists a monograph with S as set of edges whose adjacency
relation is exactly ΣpΩq. However, this monograph may not be unique since, as
mentioned in Section 3, a monograph is not generally determined by its adjacency
relation. Similarly, the direction of edges in E-graphs is not determined by the
signature Σe, it is only a convention given by the names of its operators.

5 For the sake of simplicity, we do not allow the overloading of operator names as in
[10], which would be irrelevant anyway since we wish to abstract the syntax away,
hence to consider signatures only up to isomorphisms.



For this reason it is more convenient to define a function from monographs
to monadic signatures. Indeed, any monograph determines a unique adjacency
relation that can then be interpreted as a signature. The sorts of this signature
are exactly the edges of the monograph, and for every edge

e

e0 e1 e2 e3

we create a first operator name from sort e to sort e0, a second operator name
from e to e1, and so on for all elements of the sequence.

Definition 5.2 (functor S : MonoGr Ñ MonSig). To every monograph T “
pEt, tq we associate the set

Ωt
def
“ tpe, ιq | e P Et ^ ι ă `tpequ

of operator names, and the signature ST : Ωt Ñ Et ˆ Et defined by

ST pe, ιq
def
“ pe, tpeqιq for all pe, ιq P Ωt.

To every morphism of monographs f : T Ñ U we associate the morphism Sf :
ST Ñ SU defined by

– pSfqoppe, ιq
def
“ pfpeq, ιq P Ωu for all pe, ιq P Ωt, and

– pSfqsrt
def
“ f (as a function from Et to Eu).

Note that the signature ST is finite iff T is a finite ω-monograph.

Lemma 5.3. S is an embedding from MonoGr to MonSig.

The next lemma uses the Axiom of Choice through its equivalent formulation
known as the Numeration Theorem [11].

Lemma 5.4. S is isomorphism-dense: for every monadic signature Σ there ex-
ists a monograph T such that ST » Σ.

Proof (sketch). For any object Σ : Ω Ñ S ˆ S of MonSig, and for every sort
s P S let Os be the set of operator names in Ω whose domain sort is s. By
the Numeration Theorem there exists an ordinal λs equipollent to Os, i.e., such
that there exists a bijection σs : λs Ñ Os. Let tpsq be the S-sequence of length
λs such that, for all ι ă λs, tpsqι is the range sort of the operator name σspιq,
and let T be the monograph pS, tq. It is then easy to see that the signature ST
is isomorphic to Σ by mapping every operator name ps, ιq P Ωt to the original
operator name σspιq P Ω. [\

The reason why monographs require edges of ordinal length now becomes
apparent: the length of an edge s is the cardinality of Os, i.e., the number of
operators whose domain sort is s, and no restriction on this cardinality is ascribed
to signatures. The bijections σs provide linear orderings of the sets Os.

We now show on an example that the functor S is not full, hence that S is
not an equivalence between the categories MonoGr and MonSig.



Example 5.5. The monadic signature Σg has two operators src, tgt, two sorts
in Sg “ tnodes, edgesu and is defined by Σg : src, tgt ÞÑ pedges, nodesq. Then
Onodes “ ∅ and Oedges “ tsrc, tgtu has 2 elements. Let σ : 2 Ñ Oedges be the
bijection defined by σ : 0 ÞÑ src, 1 ÞÑ tgt and t be the map defined by

tpnodesq “ ε, tpedgesq “ nodes nodes

then Tg “ pSg, tq is a monograph. The signature STg has the same sorts as Σg,
two operators pedges, 0q, pedges, 1q and is defined by

STg : pedges, 0q, pedges, 1q ÞÑ pedges, nodesq.

Hence STg is indeed isomorphic to Σg. However, the only automorphism of Tg

is idTg
, while Σg has a non trivial automorphism m “ ppsrc tgtq, IdSg

q (in cycle
notation), hence S is not surjective on morphisms.

This automorphism reflects the fact that Σg does not define an order between
its operators src and tgt. Directing edges as arrows from src to tgt is only a
matter of convention that is reflected in the choice of σ above. This contrasts
with monographs, where the edges are inherently directed by the ordinals in their
length. In the translation from MonoGr to MonSig, the direction of edges are
necessarily lost. Note however that in this example, since src and tgt have the
same range sort, the other obvious choice for σ yields the same monograph Tg.

We therefore see that in most cases there are many distinct, non isomorphic
monographs that faithfully represent a single signature, depending on the chosen
direction of their edges. Monographs carry more information than signatures,
but the additional information is precisely the kind of information that has to
be provided by means of syntax when a monadic signature is intended as a graph
structure. By observing the examples given in [7, Section 3.1], we see that this
syntactic information mostly consists of an order on operators, given either by
indices or by calling them “source” and “target”.

More precisely, Examples 3.1 to 3.4 of [7] are monadic signatures defining
graphs, edge-labelled and labelled graphs (with a possibly infinite set of labels)
and hypergraphs (see Example 6.10 below). Examples 3.5 and 3.6 are special
representations of signatures and terms. We observe in these examples a strict
partition of sorts into domain and range sorts. It is easy to see that a monograph
T is standard iff the signature ST is separated, i.e., no sort occurs both as a
domain and a range sort. Thus the range sorts are the nodes of T and the
domain sorts are edges of diverse lengths that relate nodes.

We now consider in detail Example 3.7 of [7], the only example of a monadic
signature that is not separated.

Example 5.6. Let Σa be the monadic signature defined by the set of sorts

Sa “ tV, E, V-Ass, E-Ass, Graph, Morphismu



and the following operators:

Σa : s, t ÞÑ pE, Vq
sV, tV ÞÑ pV-Ass, Vq
sE, tE ÞÑ pE-Ass, Eq
sG, tG ÞÑ pMorphism, Graphq

abstractV ÞÑ pV, Graphq
abstractE ÞÑ pE, Graphq

abstractV-Ass ÞÑ pV-Ass, Morphismq
abstractE-Ass ÞÑ pE-Ass, Morphismq

An ALR-graph is a Σa-algebra. It is not very clear how such structures can be
considered as graphs, especially because there is no conventional way of ordering
the operator name abstract w.r.t. s and t (we only know that sources come
before targets). Textual explanations are provided in [7] to help the reader’s
understanding of ALR-graphs:

ALR-graphs not only allow to represent arbitrary labeled graphs but also
morphisms between graphs. Since morphisms map vertices to vertices
and edges to edges, they are represented by pairs of vertex assignments
and edge assignments. In order to keep track of which assignment belongs
to which morphism, an abstraction operator is introduced in ALR-graphs
which allows to group vertices and edges into graphs and vertex and edge
assignments into morphisms. Thus, ALR-graphs as algebras w.r.t. the
graph structure below are able to represent the diagram level (graphs
and morphisms) and the object level (vertices, edges, and assignments)
in a single structure.

The explanations given below on the corresponding monograph are much sim-
pler. A choice of ordering abstract between s and t is made, that helps visualize
the structure. The set of edges is of course Sa, and the map ta is defined by:

tapGraphq “ ε graphs are represented by nodes
tapVq “ Graph to every vertex is associated a graph
tapEq “ V Graph V an edge joins two vertices through a graph
tapMorphismq “ Graph Graph a morphism joins two graphs
tapV-Assq “ V Morphism V a vertex association joins two vertices

through a morphism
tapE-Assq “ E Morphism E an edge association joins two edges

through a morphism.

We thus see that specifying a monadic signature by a monograph may yield
a better understanding of the structure of the corresponding algebras, at least if
these are meant as graph structures. The next section shows that this is always
possible.



6 Monadic Algebras as Typed Monographs

Now that monographs have been embedded in graph structures, the relation that
the corresponding algebras bear with these monographs may be investigated. We
first need a definition of Σ-algebras and Σ-homomorphisms that, for the sake of
simplicity, are restricted to monadic signatures.

Definition 6.1 (Σ-algebras). For any monadic signature Σ : Ω Ñ S ˆ S, a
Σ-algebra A is a pair ppAsqsPS , po

AqoPΩq where pAsqsPS is an S-indexed family
of sets and oA : AΣdspoq Ñ AΣrspoq is a function for all o P Ω. A is partitioned
if s ‰ s1 entails As XAs1 “ ∅ for all s, s1 P S.

A Σ-homomorphism h : AÑ B from a Σ-algebra A to a Σ-algebra B is an
S-indexed family of functions phsqsPS where hs : As Ñ Bs for all s P S, such
that

oB ˝ hΣdspoq “ hΣrspoq ˝ o
A

for all o P Ω. Let idA : A Ñ A be the Σ-homomorphism pIdAsqsPS, and for
any Σ-homomorphism h : A Ñ B and k : B Ñ C, let k ˝ h : A Ñ C be the
Σ-homomorphism pks ˝ hsqsPS. Let Σ-Alg be the category of Σ-algebras with
Σ-homomorphisms as their morphisms, and Σ-PAlg be its full subcategory of
partitioned algebras.

Following Example 5.5, we notice that Tg “ » MGt (where Gt is the
terminal graph, see Section 3), hence we have

Graphs » Graphs{Gt u MonoGr{MGt » MonoGr{Tg.

But we know that Graphs » Σg-Alg and that Σg » STg. The following result
allows us to replace Σg by STg.

Lemma 6.2. If Σ » Σ1 then Σ-Alg » Σ1-Alg and Σ-PAlg » Σ1-PAlg.

Note that Σ-Alg is not isomorphic to Σ-PAlg since many distinct algebras
may be Σ-isomorphic to the same partitioned algebra. There is however a trivial
equivalence between these categories.

Lemma 6.3. For every signature Σ, Σ-PAlg u Σ-Alg

By Lemma 6.2 we thus obtain MonoGr{Tg u STg-Alg, the monographs
typed by Tg are essentially the STg-algebras. We are now going to generalize
this property to all monographs T with the following functor from the category
of monographs typed by T to the category of partitioned ST -algebras.

Definition 6.4 (functor AT : MonoGr{T Ñ ST -PAlg). Given a monograph
T , we define the function AT that maps every object f : AÑ T of MonoGr{T
to the partitioned ST -algebra AT f defined by

– pAT fqe
def
“ f´1res for all e P Et, and

– pe, ιqAT f pxq
def
“ apxqι for all x P f´1res and pe, ιq P Ωt.



p e , tpeqι qpe, ιq ÞÑST

x apxqιA Ea

Et

pe,ιqA

f f

Fig. 1. The ST -algebra A “ AT f where f : AÑ T

Besides, AT also maps every morphism k : f Ñ g of MonoGr{T , where f :
AÑ T and g : B Ñ T , to the ST -homomorphism AT k from AT f to AT g defined
by

pAT kqe
def
“ k|f´1res for all e P Et.

The ST -algebra A “ AT f can be pictured as in Figure 1. In ST , every
operator name pe, ιq has e and tpeqι as domain and range sort respectively, and
these two sorts are also edges in T . Hence these edges have inverse images by f
in Ea (they form a partion of the set Ea). The inverse image of an edge e of T
is considered as the carrier set Ae, since e is a sort of ST . The operator name
pe, ιq is interpreted as the function pe, ιqA that maps every x P f´1res to the
edge apxqι.

Example 6.5. Consider the monograph Tg, the corresponding signature STg

from Example 5.5, and the monograph A “ ptx, y, zu, aq where apxq “ y z and
apyq “ apzq “ ε, i.e., x is an edge from node y to node z. There is a unique
morphism f : AÑ Tg, that is fpxq “ edges and fpyq “ fpzq “ nodes.

Let A be the STg-algebra ATg
f . By Definition 6.4 we have

Aedges “ f´1redgess “ txu and Anodes “ f´1rnodess “ ty, zu.

STg has two operator names pedges, 0q and pedges, 1q, both of domain sort
edges and range sort nodes, and their interpretation in A is given by

pedges, 0qApxq “ apxq0 “ y and pedges, 1qApxq “ apxq1 “ z.

Thus A is the algebra that traditionally represents A considered as a graph
(more precisely, as a graph G such that MG » A).

But the important point is that not only the monograph A but also its typing
f : A Ñ T can be uniquely reconstructed from any partitioned ST -algebra A,
and that this is also true on morphisms. In other words, AT is not just a functor,
it is an isomorphism of categories.

Theorem 6.6. For every monograph T , AT : MonoGr{T
»
ÝÑ ST -PAlg.

Corollary 6.7. For every monadic signature Σ there exists a monograph T such
that Σ-PAlg » MonoGr{T .



Proof. By Lemma 5.4 there exists T such that Σ » ST , hence MonoGr{T »
ST -PAlg » Σ-PAlg by Lemma 6.2. [\

We thus see that the categories of partitioned monadic algebras are isomor-
phic to the slice categories of monographs. Note that in the case of graphs, the
partitioned Σg-algebras correspond to those graphs whose sets of vertices and
edges are disjoint. This is a common restriction for graphs but not for Σ-algebras.
By Lemma 6.3 we obtain a similar result for the categories Σ-Alg.

Corollary 6.8. For every monograph T , MonoGr{T u ST -Alg, and for every
monadic signature Σ there is a monograph T such that Σ-Alg u MonoGr{T .

The first half of Corollary 6.8 also yields that Graphs{G u S˝MpGq-Alg for
all graphs G, i.e., typed graphs are equivalent to algebras of monadic signatures
(but not every monadic signature is isomorphic to some S ˝MpGq). Signatures
are sometimes called types (see, e.g., [2, Chapter 9]), which leads to the following
reading of Corollary 6.8:

algebras of monadic many-sorted types are essentially typed monographs.

This may seem strange since monographs may be typed in many different
ways, while algebras are defined with only one type (but this type may corre-
spond to many different type monographs). We now illustrate the corresponding
equivalence between E-graphs and a category of typed monographs.

Example 6.9. The signature Σe of E-graphs from [4] has six operators srcg,
tgtg, srcn, tgtn, srce, tgte and five sorts in

Se “ tedgesg, edgesn, edgese, nodesg, nodesvu,

and is defined by

Σe : srcg, tgtg ÞÑ pedgesg, nodesgq
srcn ÞÑ pedgesn, nodesgq
tgtn ÞÑ pedgesn, nodesvq
srce ÞÑ pedgese, edgesgq
tgte ÞÑ pedgese, nodesvq

hence Oedgesg
“ tsrcg, tgtgu, Oedgesn

“ tsrcn, tgtnu, Oedgese
“ tsrce, tgteu

and Onodesg “ Onodesv “ ∅. There are four possible monographs T “ pSe, tq,
given by

tpnodesgq “ tpnodesvq “ ε
tpedgesgq “ nodesg nodesg
tpedgesnq “ nodesg nodesv or nodesv nodesg
tpedgeseq “ edgesg nodesv or nodesv edgesg.

These four monographs are depicted below.

T1 T2 T3 T4



Note that, by Theorem 6.6, the categories MonoGr{Ti for 1 ď i ď 4 are iso-
morphic, even though the Ti’s are not. The type indicated by the syntax (and
consistent with the figures in [4]) is T1. An example of a monograph A typed by
T1 is

g g g

v

v

v

where g stands for nodesg and v for nodesv. The types of the other edges can
easily be deduced, yielding a unique typing morphism f : AÑ T1. This drawing
can also be read as an E-graph, i.e., as a Σe-algebra E by determining the carrier
sets of the five sorts and the functions interpreting the six operator names of Σe.
This is a tedious task that corresponds to the transformation performed by the
functor AT1

, since E » AT1
f as the reader can check.

Conversely, drawing an E-graph E corresponds to computing the typed mono-
graph A´1

T1
E and then drawing it. Note that the operator names of Σe do not

appear in the drawing of E but the sorts do, exactly as in A´1
T1

E .

We see that E-graphs can be defined simply by drawing T1, just as typed
graphs can be defined by drawing their type graph. Of course, it is not always
easy to draw a monograph, and it can be more convenient to give it explicitly as
in Example 5.6, or indeed in the following example where the type monograph is
infinite, though standard and with only one node. This example illustrates how
a monograph may be typed in many different ways.

Example 6.10. The signature Σh of hypergraphs (see [7, Example 3.4]) is defined
by the set of sorts Sh “ tVu Y tHn,m | n,m P ωu and the n`m operators

Σh : srcn,mi , tgtn,mj ÞÑ pHn,m, Vq for all 1 ď i ď n, 1 ď j ď m.

For any hypergraph H (i.e., any Σh-algebra) and n,m P ω, let us call pn,mq-
hyperedges the elements of the set HHn,m ; these are the hyperedges with n sources
and m targets. The corresponding type monograph Th “ pSh, thq is defined by

thpVq “ ε vertices are nodes
thpHn,mq “ Vn`m pn,mq-hyperedges are edges joining n`m vertices

for all n,m P ω. Hypergraphs are therefore isomorphic to monographs typed by
Th, i.e., every edge is typed by some Hn,m (or V if it is a node). An edge of length
2 can therefore be typed either by H2,0, H1,1 or H0,2 and thus represent either a
p2, 0q-, a p1, 1q- or a p0, 2q-hyperedge.

7 Some Properties of MonoGr

Depending on the signature Σ, working with Σ-algebras can be cumbersome.
For instance, the proofs given in [4, Chapter 11] have to deal with the five
carrier sets and six operators of E-graphs. With only one carrier set and one



map, monographs allow simpler notations and proofs. This can be illustrated by
establishing a few fundamental properties of MonoGr (see e.g. [5] or [1] for the
following notions from Category Theory that are not defined in Section 2).

By Corollary 6.8 it would be surprising if MonoGr had a terminal object,
since such a monograph would be a type for all monographs, hence the corre-
sponding signature would be in a sense universal. A more direct argument is
given below.

Definition 7.1 (monographs Mα). For every ordinal α ą 0 let aα be the
functional relation that to every λ ă α associates the unique t0u-sequence of

length λ. Let Mα
def
“ pα, aαq.

It is clear that Mα is a standard α-monograph, since aα Ď α ˆ αăα and
aαp0q “ ε, i.e., 0 is a node of Mα.

Lemma 7.2. For all ordinals α ą 0, β and every β-monograph B, if there is a
morphism f : Mα Ñ B then α ď β.

Proof. α is the grade of Mα, since for any λ ă α there is an edge of length λ,
that is `aαpλq “ λ, hence aαpλq R α

ăλ, and therefore Mα is not a λ-monograph.
By the existence of f the grade α of Mα is less than the grade of B, hence
α ď β. [\

Theorem 7.3. MonoGr, SMonoGr and FMonoGr have no terminal object.

Proof. Suppose that B is a terminal monograph, then there is an ordinal β such
that B is a β-monograph, and there is a morphism from Mβ`1 to B. By Lemma
7.2 this implies that β ` 1 ď β, a contradiction. This still holds if B is standard
since Mβ`1 is standard. And it also holds if B is a finite ω-monograph, since
then β can be chosen finite, and then Mβ`1 is also a finite ω-monograph. [\

This of course is a major difference between MonoGr and Graphs, but
also with the category Sets (whose terminal object is 1). Other properties de-
rive directly from those of Sets. This can be illustrated by using the standard
construction of pullbacks in Sets for building pullbacks of monographs.

Lemma 7.4. Let B, C, D be α-monographs and f : B Ñ D, g : C Ñ D be
morphisms, then there exists an α-monograph A and morphisms g1 : A Ñ B,
f 1 : AÑ C such that pA, f 1, g1q is a pullback of pf, g,Dq in MonoGr.

Proof. Let E “ tpy, zq P Eb ˆ Ec | fpyq “ gpzqu, g1 “ π1|E , f 1 “ π2|E and
A “ pE, aq, where a maps every x P E to xb ˝ g1pxq, c ˝ f 1pxqy.

We first prove that A is an α-monograph, i.e., that apxq P Eăα for all x P E.
Let y “ g1pxq and z “ f 1pxq (so that x “ py, zq), then `bpyq “ `dpfpyqq “
`dpgpzqq “ `cpzq, i.e., b ˝ g1pxq and c ˝ f 1pxq have the same length λ ă α. Then,
for all ι ă λ,

fppb ˝ g1pxqqιq “ pf
ăα ˝ bpyqqι “ pd ˝ fpyqqι

“ pd ˝ gpzqqι “ pg
ăα ˝ cpzqqι “ gppc ˝ f 1pxqqιq,



hence apxqι “ ppb ˝ g
1pxqqι, pc ˝ f

1pxqqιq P E, so that apxq P Eλ Ď Eăα.
It is obvious that g1ăα ˝ apxq “ b ˝ g1pxq and f 1ăα ˝ apxq “ c ˝ f 1pxq, hence

g1 : A Ñ B and f 1 : A Ñ C are morphisms. There remains to prove that
pA, g1, f 1q is a pullback of pf, g,Dq.

Let A1 be a monograph and g2 : A1 Ñ B, f2 : A1 Ñ C be morphisms such
that f ˝ g2 “ g ˝ f2. Since pE, f 1, g1q is a pullback of pf, g,Edq in Sets (see [4])
then there exists a unique function h from Ea1 to E such that g2 “ g1 ˝ h and
f2 “ f 1 ˝ h. Then, for all x P Ea1 ,

a ˝ hpxq “ xb ˝ g1 ˝ hpxq, c ˝ f 1 ˝ hpxqy

“ xb ˝ g2pxq, c ˝ f2pxqy

“ xg2ăα ˝ a1pxq, f2ăα ˝ a1pxqy

“ xg1ăα ˝ hăα ˝ a1pxq, f 1ăα ˝ hăα ˝ a1pxqy

“ xπ1 ˝ ph
ăα ˝ a1pxqq, π2 ˝ ph

ăα ˝ a1pxqqy

“ hăα ˝ a1pxq

hence h : A1 Ñ A is a morphism in MonoGr. [\

Theorem 7.5. The categories MonoGr, SMonoGr, FMonoGr,
O-MonoGr and O-SMonoGr have pullbacks for every set O of ordinals.

Proof. By Lemma 7.4 and sinceA is finite (resp. standard, resp. anO-monograph)
if so are B and C. [\

Corollary 7.6. The monomorphisms in MonoGr are the injective morphisms.

Proof. Assume f : B Ñ D is a monomorphism and let C “ B, g “ f and
pA, f 1, g1q be the pullback of pf, g,Dq defined in the proof of Lemma 7.4, then
f ˝g1 “ f ˝f 1 hence π1|Ea “ g1 “ f 1 “ π2|Ea . For all x, y P Eb, if fpxq “ fpyq then
px, yq P Ea and x “ g1px, yq “ f 1px, yq “ y, hence f is injective. The converse is
obvious. [\

Another way of stating this last property is that the forgetful functor from
MonoGr to Sets reflects monomorphisms (and since it is faithful it obviously
preserves them as well).

Similarly the standard construction of pushouts in Sets can be used to build
pushouts in MonoGr (see [3]). Since p∅,∅q is an initial object in MonoGr (as
in all the considered subcategories), we get the following property.

Theorem 7.7. The categories MonoGr, SMonoGr, FMonoGr,
O-MonoGr and O-SMonoGr are finitely co-complete for every set O of
ordinals.

Note that the categories mentioned in Theorem 7.3 are not finitely complete
since limits of empty diagrams are terminal objects.

As above, the construction of pushouts can be used to establish that the
epimorphisms in MonoGr are exactly the surjective morphisms (i.e., the for-
getful functor also reflects epimorphisms). But then it is easy to see that the



isomorphisms in MonoGr are exactly the bijective morphisms: if f : A Ñ B
and g : B Ñ A are such that g˝f “ idA and f ˝g “ idB , then f is bijective since
the underlying functions of idA and idB are IdEa and IdEb . Hence MonoGr
is obviously balanced, i.e., its isomorphisms are exactly the morphisms that are
both mono and epimorphisms.

Since the forgetful functor reflects both mono and epimorphisms, this obvi-
ously means that it reflects isomorphisms. This has an interesting consequence.

Lemma 7.8. The forgetful functor from MonoGr preserves and reflects pull-
backs and pushouts.

Proof. We first see that the forgetful functor preserves pullbacks. Let pf, g,Dq
be a sink in MonoGr and pA1, f2, g2q be a pullback of pf, g,Dq. Let pA, f 1, g1q
be the pullback of pf, g,Dq constructed in the proof of Lemma 7.4, then there is
an isomorphism i : A1 Ñ A such that f2 “ f 1 ˝ i and g2 “ g1 ˝ i. Since pEa, f

1, g1q
is a pullback of pf, g,Edq in Sets, then so is pEa1 , f

2, g2q.

Since the forgetful functor is faithful, reflects isomorphisms and preserves
pullbacks, then [5, Theorem 24.7] it also reflects them. The case for pushouts is
similar. [\

This means that properties of pullbacks and pushouts in Sets can easily
be transfered to MonoGr. Of particular importance in the Double Pushout
approach to Algebraic Graph Transformation is the notion of adhesive category
from [6].

Definition 7.9. A pushout square pA,B,C,Dq is a van Kampen square if for
any commutative cube

C

D

A

B

C 1

D1

A1

B1

where the back faces pA1, A,B1, Bq and pA1, A,C 1, Cq are pullbacks, it is the case
that the top face pA1, B1, C 1, D1q is a pushout iff the front faces pB1, B,D1, Dq
and pC 1, C,D1, Dq are both pullbacks.

A category has pushouts along monomorphisms if all sources pA, f, gq have
pushouts whenever f or g is a monomorphism.

A category is adhesive [6] if it has pullbacks, pushouts along monomorphisms
and all such pushouts are van Kampen squares.

Theorem 7.10. The categories MonoGr, SMonoGr, FMonoGr,
O-MonoGr and O-SMonoGr are adhesive for every set O of ordinals.



Proof. In any of these categories a commutative cube built on a pushout along a
monomorphism as bottom face and with pullbacks as back faces, has an underly-
ing cube in Sets that has the same properties by Lemma 7.8 and Corollary 7.6.
Since Sets is an adhesive category (see [6]) the underlying bottom face is a van
Kampen square, hence such is the bottom face of the initial cube by Lemma 7.8.
We conclude with Theorems 7.5 and 7.7. [\

Note that their slice categories are therefore also adhesive by [4, Theorem
4.15]. Other properties can be found in [3], in particular a gluing condition that
characterizes the existence of a pushout complement, and a construction of a
product for some pairs of monographs.

8 Conclusion

Monographs generalize standard notions of directed graphs in the following ways.

1. Nodes are considered as a special kind of edges, namely the edges of length
zero.

2. Edges can be adjacent to any edges and not only to nodes. This means that
a monograph may contain edges but no nodes. This also means that edges
can loop on themselves.

3. Edges can have any length, including infinite ones. Similarly (but this is not
a special feature) monographs can be infinite.

4. Edges are well-ordered, hence they generalize directed arrows.

The prefix of “monograph” is justified by this unified view of nodes as edges
and indiscriminate adjacency that provide formal conciseness; the suffix is jus-
tified by the correspondence (up to isomorphism) between finite ω-monographs
and their drawings.

Monographs are universal with respect to monadic many sorted signatures (or
graph structures) and the corresponding algebras, in the sense that monographs
are equivalent to graph structures extended with suitable ordering conventions on
their operator names, and that categories of typed monographs are equivalent to
the corresponding categories of algebras. Since many standard or exotic notions
of directed graphs can be represented as monadic algebras, they can also be
represented as typed monographs.

Drawing a typed monograph appears to be a much easier task than drawing
an algebra whose signature is a graph structure. This suggests that working
directly with typed monographs rather than monadic algebras would be closer
to graphical intuition as well as formally simpler.

Future work includes determining further properties of categories of mono-
graphs, especially in relation with the Double-Pushout approach to Algebraic
Graph Transformation, studying submonographs and partial morphisms [9], at-
tributed monographs as a way of generalizing the notion of attributed graphs
based on E-graphs (see [4, Definition 8.4], see also [8]), and their relations with
the Single-Pushout approach [7].



References
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