Polyhedral Regions of Stability for Aperiodic Sampled-data Linear Control Systems with Saturating Inputs - Université Grenoble Alpes
Article Dans Une Revue IEEE Control Systems Letters Année : 2021

Polyhedral Regions of Stability for Aperiodic Sampled-data Linear Control Systems with Saturating Inputs

Résumé

This work proposes a method to asses the local asymptotic stability and to provide polyhedral estimates of the region of attraction of the origin (RAO) of linear systems under aperiodic sampled-data control and saturating inputs. The approach is based on a discrete-time model that describes the behavior of the system state between consecutive sampling instants. It corresponds to a difference inclusion defined from a partition of the intersampling interval and from the saturated and nonsaturated (SNS) embedding of saturation functions. A method to construct a contractive polyhedral set for this model is proposed. It is shown that this set induces a local Lyapunov function strictly decreasing at the sampling instants and that it is an estimate of the RAO of the continuous-time closed-loop system.
Fichier principal
Vignette du fichier
Denardi_LCSS21_Polyhedral.pdf (332.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03188711 , version 1 (01-07-2021)

Identifiants

Citer

Daniel Denardi Huff, Mirko Fiacchini, Joao Manoel Gomes da Silva. Polyhedral Regions of Stability for Aperiodic Sampled-data Linear Control Systems with Saturating Inputs. IEEE Control Systems Letters, 2021, 6, pp.241-246. ⟨10.1109/LCSYS.2021.3066132⟩. ⟨hal-03188711⟩
82 Consultations
113 Téléchargements

Altmetric

Partager

More