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Polyhedral Regions of Stability for Aperiodic Sampled-data Linear
Control Systems with Saturating Inputs

Daniel Denardi Huff, Mirko Fiacchini, and João Manoel Gomes da Silva Jr.

Abstract— This work proposes a method to asses the lo-
cal asymptotic stability and to provide polyhedral estimates
of the region of attraction of the origin (RAO) of linear sys-
tems under aperiodic sampled-data control and saturating
inputs. The approach is based on a discrete-time model
that describes the behavior of the system state between
consecutive sampling instants. It corresponds to a differ-
ence inclusion defined from a partition of the intersampling
interval and from the saturated and nonsaturated (SNS)
embedding of saturation functions. A method to construct
a contractive polyhedral set for this model is proposed. It
is shown that this set induces a local Lyapunov function
strictly decreasing at the sampling instants and that it is
an estimate of the RAO of the continuous-time closed-loop
system.

Index Terms— Sampled-data control, input saturation,
polyhedral sets

I. INTRODUCTION

MOTIVATED by the growing use of embedded con-
trollers in different applications, where a communica-

tion protocol is responsible for the transmission of data be-
tween computer algorithms, actuators and sensors, the analysis
and control design for networked control systems have been
addressed in many recent works. In this context, aperiodic
sampling can be seen as a modeling abstraction employed
to represent, in a theoretical framework, the effect of im-
perfections on the communication channel such as sampling
jitters, fluctuations and, in some cases, packet dropouts [1].
The survey [2] presents several existing methods to analyze the
stability of aperiodic sampled-data systems when the dynamics
is assumed to be linear. Many among these methods are based
on an uncertain discrete-time model that describes the behavior
of the system state between consecutive sampling instants (e.g.
[3]). The exponential dependence of the transition matrix of
this difference inclusion model can be dealt with in different
ways, using, for instance, polytopic embeddings [4], [5] or
norm bounded uncertainties [6], [7]. In [8] it is shown that the
exponential stability of the discrete-time model is equivalent
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to the existence of a polyhedral Lyapunov function for the
system.

Moreover, due to physical limitations of actuators, the input
saturation is ubiquitous in real control problems. It is a source
of performance degradation and, in many cases, only local (or
regional) stability of the closed-loop system can be ensured,
even for linear plants. In the periodic sampled-data case, as
the saturation nonlinearity affects only the input, the stability
analysis can be carried out by using a discrete-time model (see
[9] and references therein) obtained by exact discretization.
Nevertheless, for the aperiodic sampled-data case, the problem
is more involved and requires a careful analysis of the hybrid
behavior of the system. Regarding this case we can cite [10]
and [11], which provide LMI-based techniques to compute
ellipsoidal estimates of the region of attraction of the origin
(RAO) of the closed-loop system, which can be seen as safe
regions of operation.

The present work addresses the same problem of [10], [11],
but focussing on the determination of polyhedral estimates of
the RAO. The proposed approach, inspired by [12] and [8],
relies on the use of a discrete-time model that describes the
behavior of the system state between consecutive sampling
instants. It is proved that if the discrete-time trajectories
converge to the origin then the continuous-time ones also do.
This discrete-time model corresponds to a difference inclusion
obtained from the use of the saturated and nonsaturated
(SNS) embedding for the saturation term [13]. It is shown
that contractive sets for this difference inclusion remain con-
tractive when scaled down and can therefore be associated
to a Lyapunov function which is strictly decreasing at the
sampling instants. It is also shown that the obtained sets can be
used as estimates of the RAO of the continuous-time closed-
loop system. In order to obtain these estimates, a numerical
algorithm is proposed that converges to a contractive set for the
considered difference inclusion under mild assumptions. As
shown by numerical examples, the method provides a powerful
tool to compute polyhedral estimates of the RAO of the system
under study.

Notation. Nm , {i ∈N : 1≤ i≤m} and S , 2Nm is the set
of all subsets of Nm. For instance: 2N2 = { /0,{1} ,{2} ,{1,2}}.
A C-set Ω is a compact and convex set containing the origin
in its interior. Given a matrix M, M(i) is its i-th row, M(i) is
its i-th column, MT is its transpose and ‖M‖ is its induced
2-norm. If M is symmetric then λmax(M) is its maximum
eigenvalue. The components of sat(v) : Rm → Rm are de-
fined as sat(r)(v), sign(v(r))min{|v(r)|,1},r ∈Nm. P(H,h),
{x ∈ Rn : Hx≤ h} ,H ∈Rnh×n,h∈Rnh , corresponds to the H-
representation of a polyhedron. Given Ω ⊆ Rn,Co(Ω) is its



convex hull and Ω◦ its interior. ek is the k-th canonical base
vector of the Euclidean space and 1, [1 . . .1]T .

II. PROBLEM FORMULATION

The system under study is given by the dynamics

ẋ(t) = Apx(t)+Bpu(t) (1)

where x ∈ Rn and u ∈ Rm represent the state and the input of
the plant, respectively. Matrices Ap and Bp have appropriate
dimensions and are supposed to be constant. The control input
is computed based on the sampled-value of the state at the time
instants tk, with k ∈ N, according to

u(t) = sat(Kx(tk)), ∀t ∈ [tk, tk+1). (2)

The difference between two successive sampling instants,
given by δk , tk+1− tk, is considered to be lower and upper
bounded as follows:

0 < τm ≤ δk ≤ τM, ∀k ∈ N. (3)

Since δk depends on k, this system models an aperiodic
sampling strategy. The particular case of periodic sampling
corresponds to δk = τm = τM for all k ∈ N.

Denoting xk , x(tk), it follows, from the analytical solution
of (1) considering (2), that the dynamics between two suc-
cessive sampling instants can be described by the following
difference inclusion:

xk+1 ∈ {A(δ )xk +B(δ )sat(Kxk) : δ ∈ ∆} (4)

where ∆, [τm,τM], A(δ ), eApδ and B(δ ),
∫

δ

0 eApsdsBp.
Definition 1: Given that the origin of a continuous-

(discrete-) time system is asymptotically stable, the region
of attraction of the origin (RAO) is the set of all x ∈ Rn

such that for x(0) = x (x0 = x) it follows that limt→∞ x(t) = 0
(limk→∞ xk = 0).

The following bound between two sampling instants holds:

‖x(t)‖ ≤ ‖A(t− tk)‖‖x(tk)‖+‖B(t− tk)‖‖sat(Kx(tk))‖
≤
(
‖A(t− tk)‖+‖B(t− tk)‖‖K‖

)
‖x(tk)‖

≤ max
τ∈[0,τM ]

(
‖A(τ)‖+‖B(τ)‖‖K‖

)
‖x(tk)‖

,CA‖xk‖, ∀t ∈ [tk, tk+1], ∀k ∈ N

Hence, the asymptotic stability of the origin of the discrete-
time model (4) ensures the asymptotic stability of the
continuous-time system (1)-(2). Then, to obtain estimates of
the RAO of the closed-loop system (1)-(2), it suffices to
analyze the behavior of the discrete-time model (4), since
xk

k→∞→ 0 implies that x(t) t→∞→ 0.
As pointed out in [9, Section 1.7], the direct handling of

the saturation nonlinearity in (4), in order to obtain testable
numerical conditions to assess the asymptotic stability of the
origin and to compute estimates of the RAO, is a quite hard
task. To overcome this problem, many representations for the
saturation term, such as sector bounded nonlinearities [10] and
polytopic embeddings [11], have been successfully considered
in the literature. Another representation is the saturated and
nonsaturated (SNS) one [13], which is less conservative than

classical polytopic embeddings. Moreover, as it will be shown
in Section III, it is suitable to compute one-step sets. The basic
idea in this case is to estimate the RAO of (4) by using the
difference inclusion

xk+1 ∈ {A(δ )xk +B(δ )satS(Kxk) : δ ∈ ∆, S ∈S }
, {FSNS(xk,δ ,S) : δ ∈ ∆, S ∈S }, FSNS(xk,∆,S )

(5)

where satS(z) , ∑i∈Sc eiz(i)+∑i∈S eisat(i)(z),S ∈S and Sc =
Nm\S (see Notation). The definition of the SNS system (5) in-
volves an additional parameter S, denoting the components of
the input that saturate. The difference inclusion (5) takes into
account all 2m possible combinations of saturated/nonsaturated
inputs given by S ∈S = 2Nm simultaneously. For example, if
m = 2 then S ∈S = 2N2 = { /0,{1} ,{2} ,{1,2}} and one has

sat{ /0}(Kxk) =

[
K(1)xk
K(2)xk

]
, sat{1}(Kxk) =

[
sat(K(1)xk)

K(2)xk

]
,

sat{2}(Kxk) =

[
K(1)xk

sat(K(2)xk)

]
, sat{1,2}(Kxk) =

[
sat(K(1)xk)
sat(K(2)xk)

]
.

Notice that (5) embeds (4): any trajectory {xk}∞
k=0 satisfying

(4) belongs to the family of trajectories that satisfy (5). In
other words, an estimate of the RAO of (5) will also be
a valid estimate of the RAO of (4) and, consequently, an
estimate of the RAO of the closed-loop system (1)-(2). Hence,
instead of directly computing an estimate for (4), we will aim
at obtaining an estimate for (5) using convex analysis tools
[14] that cannot be directly applied to (4). This estimate will
correspond to a polyhedral contractive C-set, according to the
following definition.

Definition 2: (λ -contractive set) Given 0 ≤ λ < 1, the C-
set Ω⊂Rn is said to be λ -contractive for a generic difference
inclusion xk+1 ∈G(xk) if G(xk)⊆ λΩ for all xk ∈Ω. If λ = 1,
Ω is a (positively) invariant set.

In particular, notice that a λ -contractive C-set for (5) is also
λ -contractive for (4) but the opposite is not true in general.
Moreover, the following key result holds.

Lemma 1: If a C-set Ω is λ -contractive for (5) then εΩ is
also λ -contractive for (5) for all ε ∈ R such that 0 < ε ≤ 1.

Proof: Given x̄ ∈ εΩ, we have to prove that
FSNS(x̄,∆,S ) = FSNS(εx,∆,S ) ⊆ λεΩ, where x , x̄/ε ∈
Ω. Since sat(εy) ∈ εCo{y,sat(y)} for y ∈ R and 0 ≤ ε ≤
1, it can be verified that, for S ∈ S , z , satS(εy) ∈
εCo{satS′(y) : S′ ∈S } in the multivariable case, i.e. when
y ∈ Rm. To see this notice that

z(i) =
{

sat(i)(εy), if i ∈ S
εy(i), if i /∈ S , (6)

then z(i) belongs to the interval Ii , εCo
{

y(i),sat(i)(y)
}

and,
consequently, z belongs to the polytope I , I1 × ·· · × Im ⊂
Rm. Notice now that I = εCo{satS′(y) : S′ ∈S } because the
elements of {εsatS′(y) : S′ ∈S } are the vertices of I.

Using the set inclusion above it follows that for all δ ∈ ∆



and S ∈S

FSNS(εx,δ ,S) = A(δ )εx+B(δ )satS(Kεx)

∈ εA(δ )x+B(δ )εCo
{

satS′(Kx) : S′ ∈S
}

= εCo
{

A(δ )x+B(δ )satS′(Kx) : S′ ∈S
}

⊆ εCo{FSNS(x,∆,S )} ⊆ εCo(λΩ) = ελΩ

where the last set inclusion follows from the fact that Ω is
λ -contractive for (5) and x ∈Ω.

From Lemma 1, it follows that if Ω is a λ -contractive C-set
w.r.t. (5) then

xk ∈ εΩ ⇒ xk+p ∈ λ
p
εΩ, 0≤ ε ≤ 1, (7)

which implies that xk
k→∞→ 0 because Ω is bounded by defini-

tion. Moreover, as (5) encompasses (4), (7) also holds for the
trajectories of (4) and it becomes clear that Ω is an estimate
not only of the RAO of (5) but also of the RAO of (4).

There is an alternative statement for Definition 2 based on
the Minkowski function ΨΩ : Rn→ R of the C-set Ω, which
is given by ΨΩ(x),min{α ≥ 0 : x∈ αΩ} [14]. This function
satisfies the following properties.

Lemma 2 ( [14]): ΨΩ(·) is continuous, positive definite,
convex, positively homogeneous of order 1, sub-additive
(i.e. ΨΩ(x1 + x2) ≤ ΨΩ(x1) +ΨΩ(x2)) and lower and upper
bounded as follows: m‖x‖ ≤ΨΩ(x)≤M‖x‖,m,M > 0.

The concept can be extended to sets. Given a C-set Ω⊂Rn,
the Minkowski function of a compact set Θ ⊂ Rn is defined
as ΨΩ(Θ),maxx∈Θ ΨΩ(x).

Thus, the condition in Definition 2 for a C-set Ω to be λ -
contractive for xk+1 ∈ G(xk) is equivalent to:

ΨΩ(xk+1)≤ λ ,∀xk+1 ∈ G(xk), ∀xk ∈Ω

⇔ ΨΩ (G(xk))≤ λ , ∀xk ∈Ω

Notice that the Minkowski function of a λ -contractive C-set
Ω for (5) is a local Lyapunov function for (5) and consequently
for (4), since from (7) it follows that:

ΨΩ(xk)≤ 1⇒ΨΩ(xk+1)≤ λΨΩ(xk).

III. STABILITY ANALYSIS

The proposed stability analysis method can be divided in
two steps. The first one, presented in Section III-A, consists
in finding a contractive polyhedral C-set Ω for the dynamics

xk+1 ∈ FSNS(xk,∆J ,S ) (8)

where ∆J , {τm +( j− 1)τJ : j ∈ NJ}, τJ ,
τM−τm

J , J ∈ N.
Note that (8) considers only a finite subset ∆J of the interval
∆ and thus (8) is embedded by (5), i.e. FSNS(xk,∆J ,S ) ⊆
FSNS(xk,∆,S ). The second step, presented in Section III-B,
verifies if the set Ω found is also contractive for (5) (not
necessarily with the same contraction factor λ ). If this is true,
then we can conclude that Ω is an estimate of the RAO of
(4) and, consequently, of the RAO of the closed-loop system
(1)-(2).

A. Computation of a contractive set for (8)
The definition of one-step set with respect to (8), given

below, plays a key role in this work.
Definition 3: Given J ∈ N and Ω ⊆ Rn, the one-step set

QJ(Ω) of Ω is

QJ(Ω), {x ∈ Rn : FSNS(x,∆J ,S )⊆Ω} . (9)
Notice that a C-set Ω is λ -contractive for (8) if Ω ⊆

QJ(λΩ). The following lemma provides a polyhedral char-
acterization of QJ(Ω) when Ω is a polyhedron.

Lemma 3: Let Ω be a polyhedron, where Ω = P(H,h) is
its H-representation [14]. Then

QJ(Ω) =
⋂

δ∈∆J

⋂
S∈S

{
x ∈ Rn : H

(
A(δ )+ ∑

i∈Sc
B(i)(δ )K(i)

)
x

−∑
i∈S
|HB(i)(δ )| ≤ h

}
. (10)

Proof: The proof follows the one in [13, Theorem 1]
mutatis mutandis.

The definition below presents the concept of maximal λ -
contractive C-set included in a given C-set Ω0.

Definition 4: Given a C-set Ω0, a λ -contractive C-set Ω⊆
Ω0 is maximal in Ω0 if every λ -contractive C-set Ω′ contained
in Ω0 is also contained in Ω.

The following theorem, inspired by [12, Theorem 3.1], in-
troduces the recursion used to find the maximal λ -contractive
C-set for (8) in a given C-set Ω0. Unlike [12, Theorem 3.1],
valid only for linear systems, our result applies to the nonlinear
case of SNS systems.

Theorem 1: Given J ∈ N, consider the sequence of sets

Ωi+1 = QJ(λΩi)∩Ω0, ∀i ∈ N, (11)

where Ω0 is a polyhedral C-set and 0 < λ < 1. The following
properties hold:

a) Ωi is a polyhedral C-set for all i ∈ N.
b) Ωi+1 ⊆Ωi for all i ∈ N.
c) If a λ -contractive C-set for (8) Ω′ ⊆Ω0 exists, then

Ωλ ,J ,
⋂
i∈N

Ωi (12)

is the maximal λ -contractive C-set for (8) in Ω0.
Proof:

a) Let us prove it by induction. Assume Ωi is a polyhedral
C-set. Then λΩi can be expressed as P(Hi,1) for an
appropriate choice of Hi and it follows from (10) that
QJ(λΩi) is a polyhedron containing the origin in its
interior. Its intersection with the polytope Ω0 is thus a
polytope (which also contains the origin in its interior
since 0 ∈Ω◦0). So Ωi+1 is a polyhedral C-set.

b) This proof also is by induction. If Ωi+1 ⊆ Ωi (the case
i = 0 is clearly true), then QJ(λΩi+1)⊆QJ(λΩi) and it
follows that

Ωi+2 = QJ(λΩi+1)∩Ω0 ⊆ QJ(λΩi)∩Ω0 = Ωi+1.

c) Consider any λ -contractive C-set Ω′′ ⊆Ω0 (for instance
Ω′′ = Ω′, which exists by hypothesis). It follows by
induction that Ω′′ ⊆Ωλ ,J . In fact, if Ω′′ ⊆Ωi then

Ω
′′ ⊆ QJ(λΩ

′′)∩Ω0 ⊆ QJ(λΩi)∩Ω0 = Ωi+1,



i.e. Ω′′ ⊆
⋂

i∈N
Ωi = Ωλ ,J . It also follows that 0 ∈ Ω

◦
λ ,J

because 0 ∈ (Ω′′)◦. So Ωλ ,J is a C-set (compact and
convex because it is the intersection of nested C-sets).
We still have to prove Ωλ ,J is λ -contractive for
(8). Given x ∈ Ωλ ,J , it follows that x ∈ Ωi+1 ⊆
QJ(λΩi),∀i ∈ N, i.e. FSNS(x,∆J ,S ) ⊆ λΩi,∀i ∈ N. So
FSNS(x,∆J ,S ) ⊆ λ

⋂
i∈N

Ωi = λΩλ ,J . Therefore Ωλ ,J is

indeed λ -contractive.

In general, the set Ωλ ,J might be not obtainable in a finite
number of iterations by an algorithm (and in general it is not
polyhedral). That is why we use the following result.

Lemma 4: Assume Ωλ ,J in (12) is a λ -contractive C-set for
(8). Then for every λ ∗ such that λ < λ ∗ < 1 there exists i∗ ∈N
such that λ/λ ∗Ωi is λ ∗-contractive for (8) for all i≥ i∗.

Proof: Consider λ ∗/λ > 1. There exists i∗ ∈N such that
Ωλ ,J ⊆Ωi⊆ λ ∗/λΩλ ,J ,∀i≥ i∗ [15, Lemma 1.8.1]. Using these
set inclusions (up to scale factors) and the fact that Ωλ ,J is
λ -contractive for (8) it follows that

λ

λ ∗
Ωi ⊆Ωλ ,J⊆ QJ(λΩλ ,J)⊆ QJ(λΩi) = QJ

(
λ
∗
(

λ

λ ∗
Ωi

))
for all i≥ i∗, that proves the result.

Lemma 4 ensures that, under the given assumptions, the set
Ω = λ/λ ∗Ωi∗ , obtained by iterating (11) a finite number i∗ of
times, is a λ ∗-contractive polyhedral C-set for (8) .

B. Testing contractivity for (5)
The second step of the method consists in verifying if

the contractive set found for (8) is also contractive for the
dynamics (5), which takes into account all possible values for
δk ∈ ∆ and not only the finite set ∆J . The following property
plays a key role to verify that.

Lemma 5: Given d,τ ∈ R, the following identities hold:

A(d + τ) = A(d)+Φ(τ)eApdAp (13)

B(d + τ) = B(d)+Φ(τ)

Ap

d∫
0

eApsdsBp +Bp


= B(d)+Φ(τ)eApdBp (14)

where Φ(τ),
τ∫
0

eApsds.

Proof: See the proof of [6, Proposition 1].
Using the lemma above, it follows that

FSNS(x,d + τ,S) =
[
A(d + τ) B(d + τ)

][ x
satS(Kx)

]
=
([

A(d) B(d)
]
+Φ(τ)eApd [Ap Bp

])[ x
satS(Kx)

]
= FSNS(x,d,S)+Φ(τ)eApd [Ap Bp

]︸ ︷︷ ︸
,N(d)

[
x

satS(Kx)

]
. (15)

Define now the logarithmic norm of Ap associated with the

2-norm [16]: µ(Ap), λmax

(
Ap +AT

p

2

)
. Notice in particular

that µ(Ap) can be negative. The following theorem can now
be stated.

Theorem 2: Consider J ∈N and a λ ∗-contractive polyhedral
C-set Ω for the dynamics (8). If the constant

c̄(Ω,J), c1(J)c2c3(Ω)c4(Ω), (16)

where

c1(J),


eµ(Ap)τJ −1

µ(Ap)
if µ(Ap) 6= 0

τJ if µ(Ap) = 0
(17)

c2 ,max
(

eµ(Ap)τm ,eµ(Ap)τM
)√
‖Ap‖2 +‖Bp‖2 (18)

c3(Ω),max
x∈Ω

∥∥∥∥[ I
K

]
x
∥∥∥∥ (19)

c4(Ω),ΨΩ(B), B , {x ∈ Rn : ‖x‖ ≤ 1}, (20)

is such that
ν(Ω,J), λ

∗+ c̄(Ω,J)< 1, (21)

then Ω is ν(Ω,J)-contractive for the dynamics (5).
Proof: We have to show that xk+1 given by (5) satisfies
ΨΩ(xk+1) ≤ ν(Ω,J),∀xk ∈ Ω. Given xk ∈ Ω,δk ∈ ∆,Sk ∈ S ,
there exist dk ∈ ∆J and τk ∈ [0,τJ ] such that δk = dk + τk. So
using (15) it follows that

xk+1 = FSNS(xk,dk + τk,Sk)

= FSNS(xk,dk,Sk)+Φ(τk)N(dk)

[
xk

satSk(Kxk)

]
, yk+1 + zk+1 (22)

From the fact that Ω is λ ∗-contractive for (8), dk ∈ ∆J and
xk ∈Ω, it follows that

ΨΩ(yk+1)≤ΨΩ(FSNS(xk,∆J ,S ))≤ λ
∗. (23)

Considering that ‖eAps‖ ≤ eµ(Ap)s for all s ≥ 0 (see [16]),
and since τk ∈ [0,τJ ], one obtains:

‖Φ(τk)‖=

∥∥∥∥∥∥
τk∫

0

eApsds

∥∥∥∥∥∥≤
τk∫

0

∥∥eAps∥∥ds≤
τJ∫

0

eµ(Ap)sds = c1(J).

Moreover, one has that

‖N(dk)‖ ≤
∥∥∥eApdk

∥∥∥∥∥[Ap Bp
]∥∥≤ eµ(Ap)dk

∥∥[Ap Bp
]∥∥

≤max
d∈∆J

(
eµ(Ap)d

)√
‖Ap‖2 +‖Bp‖2

≤max
(

eµ(Ap)τm ,eµ(Ap)τM
)√
‖Ap‖2 +‖Bp‖2 = c2.

Using the inequalities above we conclude that

‖zk+1‖ ≤ ‖Φ(τk)‖‖N(dk)‖
∥∥∥∥[ xk

satSk(Kxk)

]∥∥∥∥≤ c1(J)c2c3(Ω),

i.e. zk+1 ∈ c1(J)c2c3(Ω)B. Then, from (22), (23) and the
properties in Lemma 2, we get

ΨΩ(xk+1)≤ΨΩ(yk+1)+ΨΩ(zk+1)≤λ
∗+c1(J)c2c3(Ω)ΨΩ(B)

= λ
∗+ c̄(Ω,J) = ν(Ω,J). �



Remark 1: The constant c3(Ω) can be obtained, in practice,
by taking the maximum over the vertices of the polytope Ω

or by solving a quadratic programming problem with linear
constraints. In turn, c4(Ω) can be computed as

c4(Ω) = ΨΩ(B) = min{α ≥ 0 : B ⊆ αΩ}

= min{α ≥ 0 : Hx≤ αh,∀x ∈B}= max
i∈Nnh

‖H(i)‖
h(i)

where Ω = P(H,h),H ∈ Rnh×n,h ∈ Rnh , assuming without
loss of generality that h(i) > 0 for all i ∈ Nnh .

The next theorem makes a connection between the preced-
ing results. It states that, under some conditions, the recursion
(11) not only will result in a λ ∗-contractive polyhedral C-set
Ω= λ/λ ∗Ωi∗ for (8) but also that this set Ω will indeed satisfy
the hypothesis (21) of Theorem 2.

Theorem 3: Assume that there exists a γ-contractive C-set
Ω′ ⊆ Ω0 ⊂ Rn for (5), where Ω0 is a polyhedral C-set and
0 < γ < 1. Then, given λ ,λ ∗ with γ ≤ λ < λ ∗ < 1, there exists
J̄ = J̄(λ ,λ ∗) satisfying the following property: for all J ≥ J̄
there is i∗ ∈N such that the set Ω = λ/λ ∗Ωi∗ obtained by the
recursion (11) is λ ∗-contractive for (8). Moreover, for such i∗

the constraint (21) will be satisfied for Ω.
Proof: Since Ω′ is γ-contractive for (5) and λ ≥ γ it

is also λ -contractive for (8) for every J ∈ N. So from item
c) of Theorem 1 it follows that Ω′ ⊆ Ωλ ,J and that Ωλ ,J is
a λ -contractive C-set for (8). Applying now Lemma 4 we
conclude that there exists i∗ ∈ N such that Ω = λ/λ ∗Ωi∗ is
λ ∗-contractive for (8), i.e. Ω⊆ QJ (λ

∗Ω).
We still have to show that ν(Ω,J) = λ ∗+ c̄(Ω,J) < 1 for

all J ≥ J̄, where J̄ = J̄(λ ,λ ∗) must be appropriately chosen.
Recalling that Ω = λ/λ ∗Ωi∗ ⊂Ωi∗ ⊆Ω0, we have that:

c̄3 ,max
x∈Ω0

∥∥∥∥[ I
K

]
x
∥∥∥∥≥max

x∈Ω

∥∥∥∥[ I
K

]
x
∥∥∥∥= c3(Ω). (24)

Moreover, as λ/λ ∗Ω′ ⊆ λ/λ ∗Ωλ ,J ⊆ λ/λ ∗Ωi∗ = Ω:

c̄4 ,Ψλ/λ ∗Ω′(B)≥ΨΩ(B) = c4(Ω). (25)

Since c1(J)
J→∞→ 0, there exists J̄ = J̄(λ ,λ ∗) such that

c1(J)c2c̄3c̄4 < (1−λ ∗) for all J ≥ J̄. Thus for every J ≥ J̄

ν(Ω,J) = λ
∗+ c̄(Ω,J) = λ

∗+ c1(J)c2c3(Ω)c4(Ω)

≤︸︷︷︸
(24),(25)

λ
∗+ c1(J)c2c̄3c̄4 < 1 (26)

which concludes the proof.
Remark 2: As a byproduct of the proof, notice that the

existence of a γ-contractive C-set Ω′ ⊆ Ω0 ⊂ Rn for (5) not
only guarantees that the proposed recursion (11) will result
in a ν(Ω,J)-contractive polytope Ω for (5), with appropriate
choices of λ ,λ ∗ and J, but also ensures that the obtained
estimate of the RAO Ω will include the estimate Ω′ up to a
scaling factor λ/λ ∗, i.e. λ/λ ∗Ω′ ⊆Ω.

IV. NUMERICAL ALGORITHM

The Algorithm 1 below is proposed to obtain a ν(Ω,J)-
contractive polyhedral C-set Ω for (5), and can be therefore
used as an estimate of the RAO of (1)-(2).

Algorithm 1
Input: Choose a polyhedral C-set Ω0, 0 < λ < λ ∗ < 1,J =
J0 ∈ N and ī ∈ N

while J < ∞ do
i = 0
while i < ī do

Compute Ωi+1 using (11)
if Ω, λ/λ ∗Ωi+1 satisfies Ω⊆ QJ (λ

∗Ω) then
Compute ν(Ω,J) using (16)-(21)
if ν(Ω,J)< 1 then

Stop successfully
else

i = ī+1
end if

else
i← i+1

end if
end while
if i = ī then

λ ← λ +1
2

, λ
∗← λ ∗+1

2
(27)

else
J← J+1 (case i = ī+1)

end if
end while

Output: Contractive polyhedral C-set Ω w.r.t. (5)

Notice that (11) is recursively applied until a λ ∗-contractive
polytope is found for (8) or until the maximum number of
iterations ī is reached, with ī, empirically chosen, assumed
to be a very large constant (such that ī > i∗ will most likely
be true where i∗ is defined in Lemma 4). If ī is reached, the
algorithm increases the value of λ with the aim of making
λ ≥ γ according to the statement of Theorem 3, where γ is
not known a priori. The update rule (27) is just a possible
choice and can be modified by the users of the method.

On the other hand, if a λ ∗-contractive polytope is found for
(8) but constraint (21) is violated, the algorithm increases the
value of J. This choice is also inspired by the assumptions of
Theorem 3, which guarantees that ν(Ω,J)< 1 for J sufficiently
large if the other hypothesis hold.

V. NUMERICAL EXAMPLES

A. Example I
Consider the system taken from [11], where:

Ap =

[
0 1
1 0

]
, Bp =

[
0
−5

]
, K =

[
2.6 1.4

]
, ∆ = [0.05,0.1].

Choosing λ = 0.98 and λ ∗ = 0.99 and considering as initial
set Ω0 a square with side of size 20 centered at the origin,
the algorithm above gives, for J = 140, the polytope Ω35
displayed in Figure 1, which is an estimate of the RAO of
(1)-(2). In this case, the contractivity factor of Ω35 is given by
ν(Ω35,140)∼= 0.999 < 1. For comparison purposes, the figure
also shows the piecewise quadratic estimate obtained with



the conditions proposed in [11] and the ellipsoidal estimates
obtained through the methods presented in [10] and [17].
Notice that the approach presented here results in an estimate
of the RAO that includes the other ones.

Fig. 1. Estimates of the RAO of (1)-(2) given by the proposed approach
(black-continuous) and by the methods proposed in [10] (black-dotted),
[11] (red-dotted) and [17] (blue-dashed).

B. Example II

Consider the three-dimensional system (1)-(2) with:

Ap =

0.75 0.35 1.75
0.7 0 0.7

0.75 −1.1 1.75

, Bp =

0.7
0

0.7

,
K =

[
−24.82 −22.85 11.13

]
, ∆ = [0.1,0.2].

Choosing λ = 0.8 and λ ∗ = 0.95 and considering as initial

Fig. 2. Estimate of the RAO of (1)-(2) given by the proposed approach.

set Ω0 a square with side of size 20 centered at the origin, the
algorithm leads, for J = 100, to the polytope Ω12 displayed in
Figure 2, where ν(Ω12,100)∼= 0.99 < 1.

VI. CONCLUSIONS

A method for the computation of polyhedral estimates of
the RAO of aperiodic sampled-data systems subject to control
input saturation was presented. As shown in the first example,
the obtained polytope provided a less conservative estimate
of the RAO than other methods in the literature. The main
drawback of our approach is its numerical complexity, as usual
for methods based on polyhedrons [14]. On the other hand,
efficient numerical tools for dealing with this class of sets
exist, as the MPT toolbox [18], for instance.
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