LPV control for autonomous vehicles using a machine learning-based tire pressure estimation - Université Grenoble Alpes Accéder directement au contenu
Communication Dans Un Congrès Année : 2020

LPV control for autonomous vehicles using a machine learning-based tire pressure estimation

Résumé

The paper presents a data-driven method for tire pressure estimation and an LPV-based control design for autonomous vehicles. The motivation of the research is that the pressures of the tires have high impacts on the lateral dynamics of the vehicle, because the loss of tire pressure may result in degradation in the lateral vehicle motion. First, a machine learning-based estimation algorithm, which uses only signals of on-board sensors, is proposed. Second, an LPV-based lateral control design is proposed, which uses the estimated tire pressure as a scheduling variable. The control is able to handle situations, in which the tire pressure decreases. The efficiency and the operation of the control system is illustrated through a comprehensive simulation example using the high-fidelity simulation software CarMaker.
Fichier principal
Vignette du fichier
MED20__home_papercept_controls.papercept.net_www_conferences_conferences_MED20_submissions_0083_FI.pdf (2.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02940732 , version 1 (16-09-2020)

Identifiants

Citer

Dániel Fényes, Tamás Hegedűs, Balázs Németh, Péter Gáspár, Damien Koenig, et al.. LPV control for autonomous vehicles using a machine learning-based tire pressure estimation. MED 2020 - 28th Mediterranean Conference on Control and Automation, Sep 2020, Saint-Raphaël, France. ⟨10.1109/MED48518.2020.9183106⟩. ⟨hal-02940732⟩
51 Consultations
189 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More