Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

LPV control for autonomous vehicles using a machine learning-based tire pressure estimation

Abstract : The paper presents a data-driven method for tire pressure estimation and an LPV-based control design for autonomous vehicles. The motivation of the research is that the pressures of the tires have high impacts on the lateral dynamics of the vehicle, because the loss of tire pressure may result in degradation in the lateral vehicle motion. First, a machine learning-based estimation algorithm, which uses only signals of on-board sensors, is proposed. Second, an LPV-based lateral control design is proposed, which uses the estimated tire pressure as a scheduling variable. The control is able to handle situations, in which the tire pressure decreases. The efficiency and the operation of the control system is illustrated through a comprehensive simulation example using the high-fidelity simulation software CarMaker.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-02940732
Contributeur : Olivier Sename <>
Soumis le : mercredi 16 septembre 2020 - 14:57:39
Dernière modification le : mardi 20 octobre 2020 - 15:55:26

Fichier

MED20__home_papercept_controls...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Dániel Fényes, Tamás Hegedűs, Balázs Németh, Péter Gáspár, Damien Koenig, et al.. LPV control for autonomous vehicles using a machine learning-based tire pressure estimation. 28th Mediterranean Conference on Control and Automation, Sep 2020, SAINT RAPHAEL, France. ⟨10.1109/MED48518.2020.9183106⟩. ⟨hal-02940732⟩

Partager

Métriques

Consultations de la notice

16

Téléchargements de fichiers

41