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LPV control for autonomous vehicles using a machine learning-based
tire pressure estimation

Déniel Fényes, Tamas Heged(is, Baldzs Németh, Péter Gaspar, Damien Koenig and Olivier Sename

Abstract— The paper presents a data-driven method for
tire pressure estimation and an LPV-based control design for
autonomous vehicles. The motivation of the research is that
the pressures of the tires have high impacts on the lateral
dynamics of the vehicle, because the loss of tire pressure may
result in degradation in the lateral vehicle motion. First, a
machine learning-based estimation algorithm, which uses only
signals of on-board sensors, is proposed. Second, an LPV-based
lateral control design is proposed, which uses the estimated
tire pressure as a scheduling variable. The control is able to
handle situations, in which the tire pressure decreases. The
efficiency and the operation of the control system is illustrated
through a comprehensive simulation example using the high-
fidelity simulation software CarMaker.

I. INTRODUCTION AND MOTIVATION

Throughout the history of the automotive industry, the
main goals are to develop new devices, techniques and
methods. For example vehicles use sensor fusion-based
approaches to get rid of expensive sensors such as high-
accuracy GPS or pressure sensors. The main idea behind
these methods is to use low-cost sensors, with which vehicles
are already equipped, such as accelerometers, gyroscopes.
These sensors provide explicit signals about the vehicle, and
additionally, hidden implicit information on the unmeasured
parameters of the vehicle. Data-driven methods are able to
improve the estimation of vehicle parameters, which can
reveal hidden information using deep-learning and machine
learning algorithms.

In the literature numerous studies are found, which are
related to sensor fusion tasks. A novel method to estimate
the side-slip angle of the vehicle using only on-board sensors
was presented by [1] . The stability analysis of the vehicle
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by using the onboard measurements was presented by [2]. A
wavelet-based approach for the tire pressure estimation was
proposed by in [3]. An indirect estimation method, which
exploits the high correlation between the stiffness of the tire
and the pressure, was proposed by [4]. An approach, in which
the lateral dynamics measurements are used to detect the loss
of pressure, was proposed by [5]. The low pressure in the tire
may highly influence the lateral stability and performances
of the vehicle, because the lateral tire force depends on the
pressure. Several control methods have been developed to
avoid this problem. An H .,-based solution, which can ensure
the stability of the vehicle at low tire pressure, was proposed
by [6]. A flatness-based MPC (Model Predictive Control)
approach was proposed for handling this task, see [7].

In this paper the estimation and control design tasks
are simultaneously addressed. The main contribution of the
paper is a novel estimation method for tire pressure. The
method is based on a machine learning-based algorithm,
more precisely, the Pace regression method. In the control
design an LPV (Linear Parameter Varying) based method
is applied, in which the estimation of the tire pressure is
used as a scheduling parameter. Combining these functions,
a more reliable control strategy is achieved, which is able to
guarantee stable and safe lateral motion of the vehicle even
at low tire pressures.

The paper is structured as follows: Section II presents
the steps of the data acquisition and the data analysis. The
applied machine learning algorithm is also presented in this
section. The control design steps are detailed in Section III.
Furthermore, a simulation example is presented in Section IV
shows simulation results. Finally, the paper is summarized in
Section V.

II. METHOD OF VEHICLE DATA COLLECTION AND
ANALYSIS

The entire structure of the control system is depicted in
Figure 1. The algorithm is divided into three layers which
are the followings: Simulation environment, Tire pressure
estimation and Control system. The Simulation environment
serves to validate the algorithm, in which CarMaker simu-
lation software is used. The Control System consists of the
main steps of the control design, which can be divided into
two sub-layers. The upper sub-layer generates the reference
trajectory, and the lower one is responsible for the control of
the vehicle. In this section the Tire pressure estimation layer
is presented in detail.

The goal of the Tire pressure estimation layer is to estimate
the pressure of the tires using low-cost sensors. In this
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Fig. 1. Structure of the control system

estimation algorithm only the commonly used sensor signals
are used (e.g. accelerations, velocities, steering angle).

A. Acquisition of data from simulations

The first step is the acquisition of the appropriate data,
with which dataset for the training and validation of the
machine learning-based algorithms can be provided. For
this purpose several simulations have been performed in the
simulation environment, which is the high-fidelity vehicle
software CarMaker. During these simulations, two parame-
ters of the car have been modified, such as tire pressure and
the longitudinal velocity.

The longitudinal velocity varies in the interval
11m/s...15m/s, whilst, the pressure of the front left
tire changes between 1.0 — 2.5bar with the step size
Ap = 0.1 bar. The velocity is set by a built-in PID-based
cruise control. During the simulations several parameters
are measured and saved such as yaw-rate, accelerations and
velocities in various directions, steering angle, tire forces
etc. The sampling time is set to Ty = 0.01s. In this way,
more than one million distinct instances are collected.

B. Brief overview of Pace Regression

In the next step the collected data is evaluated by using the
Pace Regression algorithm [8], which has been implemented
in various data-mining software, e.g. Weka. Basically, the
algorithm Pace regression is a standard linear regression
method. This regression uses a clustering algorithm to deter-
mine the best subset of the attributes (variables). It works in
the following way:

o X represents the design matrix, and its size is n X k.

« It is assumed that the dataset consists of n independent

instances.

o The dataset has k input variables and one output. This
dataset is written in a matrix X. * is the parameter
vector of the best model, then the output y is given by
the following linear equation.

y=X¢ +e )

The algorithm tries to find the best parameter vector by
minimizing the deviation between the calculated output gy

and the measured output y. During this minimization, the
algorithm creates a lot of subsets to find the best fitting
solution for this task. Further details of Pace Regression is
found in [9].

C. Evaluation of the regression models

In the following the results of the machine learning based
estimation is presented though illustrations. For example,
when all of the collected attributes in the regression are used,
the machine learning algorithm provides accurate estimation.
Figure 2 figure shows the results of the estimation for three
different cases, when the pressure of the tire is set to 1.3
bar, 1.7 bar and 2.1 bar, respectively, and the velocity is
set to 14 m/s. The calculated pressures values are rounded
to eliminate fluctuation in the estimation.
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Fig. 2. Estimation of the pressure constant velocity

Although the previous estimation seems to be accurate
enough, the velocity has been set to constant, which is
unrealistic in various traffic scenarios. Thus, the velocity of
the vehicle varies by using the CarMaker Driver, which is
the in-built model of the simulator. The estimated pressure
is illustrated in Figure 3.
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Fig. 3. Estimation of the pressure CarMaker Driver

As the velocity varies during the simulation, the estimation
becomes less accurate. Therefore, a new dataset is generated,



in which the reference velocity of the vehicle varies randomly
during the simulation. However, in this case the Pace Regres-
sion provides worse results using only the actual values of
the attributes. Therefore, the past values of the variables must
be also used. In order to determine the most influential past
values, a spectral analysis is performed, which is illustrated
in Figure 4. It is shown that the information content of the
signal is below 6 H z, above this value only the noises appear.
Consequently, the time interval between two consecutive
points is set to ' = 1/6Hz = 0.15 s. In this manner, the
most significant values are selected and the number of the
past values are reduced.

Fig. 4. Result of the spectral analysis

Moreover, in practice some of the attributes cannot be
measured directly, e.g. the forces on the tires or the side slip
angles. Therefore, only the signals, which are available from
the on-board system (velocity, steering angle, wheel speeds,
yaw rate and accelerations) are selected in the generation
of the regression model. Using the selected data, a new
estimation model is built up. The following table shows
correlation coefficients of the generated models and the mean
errors.

All data | Past data | Const. velocity | Accuracy | Av. error
v X v 97.9 0.0063
X X v 69.19 0.072
v v v 96.38 0.0194
X v v 90.1 0.047
v v X 19.5 0.129
X v X 9.8 0.29
X X X 22.3 0.91

TABLE I

TABLE OF THE ACCURACY

The result of the above simulations has shown that when
all of the attributes is applied, the accuracy of the estimation
is the highest. When only the measurable signals are used,
the accuracy reduces. However, using also the past values of
attributes the rate of the correctly classified pressure values
increases. In both cases, the estimation was inaccurate when
the velocity varies during the simulation. Thus, new dataset is
generated, in which the reference value of the velocity varies
randomly. The results obtained by using the new dataset are

shown in the following table, but in this case only the results
of the relevant algorithms are shown.

All data | Past data | Const. velocity | Accuracy | Av. error
X X X 26.7 0.101
X v X 57.4 0.14

TABLE I
TABLE OF THE ACCURACY USING THE NEW DATASET

As table shows, in the second case, the accuracy is high
close to 60% with a reasonable mean error of 0.14. This
means that the algorithm is able to estimate the tire pressure
well.

III. LPV-BASED CONTROL USING THE TIRE PRESSURES

In this section an LPV-based lateral control design is
presented for automated vehicles. In the control design, the
pressure of the front tire is used as a scheduling parameter.
This parameter is estimated by using the machine learning
technique. The model another scheduling variable, which is
the longitudinal velocity. The control inputs of the system
are the steering angle (6) and the differential torque (My). In
this section the control-oriented vehicle model, the steering
model and the LPV design are proposed.

A. Modeling of the vehicle dynamics

The lateral dynamics of the vehicle is modeled by the
single-track bicycle model. The idea behind this model is to
replace the front and rear wheels by a single track, which
are placed on the symmetrical axis of the vehicle. The model
consists of three basic equations [10]:

Ip = Fyy(ar)ly — Fry(ag)ls + Mg+ AF(p)l; - (2)
mug (4 B) = Fry(ar) + Fry(as) + AF(p1)  (3)

where m is the mass of the car, v,, is the longitudinal velocity,
I denotes the yaw-inertia, ¥ is the yaw-rate, [3 represents
the side-slip angle, /; are geometric parameters, I; ; are the
lateral forces generated by the tires, AF is the additional
force generated by the pressure loss, «; denote the side-slip
of the front and rear wheels.

In the control-oriented model, the characteristics of the
lateral forces is linearized and it is rewritten as F;, =
C;a;, where C; denotes the cornering stiffness. Although the
pressure p; does not appear in the equations, this variable
highly correlates to the cornering stiffness (C') which is
determined as [11]:

C= Iy (5)

(%

The effect the pressure loss can also be described as a linear
function since it similarly influences the lateral force as the
cornering stiffness, see Figure 5 .

The lateral model is transformed into a state-space repre-
sentation:

Ty = Av(vacvpl)xv + Bv(vmapl)uv (6)
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. : T .
The state vector is z,, = [1/) B vy y} . The control input
vector is u, = [5 Md]. The scheduling parameters are the
longitudinal velocity v, and the pressure of the front tire p;.

B. Modeling of the steering system

In order to increase the performances of the lateral control
system, the bicycle model is augmented with dynamics of the
steering mechanism. The dynamics of the steering system is
approximated by a second-order system, whose general form
is:

bo s2+ bi1s + by
Gs(s) = —5———

s+ ai1s+ ag

Parameters b; and a; of the transfer function Gg(s) are
dformed in ARX (autoregressive with exogenous signal)
structure, see [12].

y(t)+ary(t — 1)+ ... + an, y(t — na) (8)
=biu(t — 1)+ ... + by, u(t — np) + e(t),

)

where u is the input, y is the output of the system and e is a
model noise. In this case y is the angle of the wheels on the
front axle, while u is the angle of the steering wheel. In the
steering system the following paremeters are to be estimated:

bin, )t (9)

Using (8) the following two equations are written:

g = [ao aq At—n, bo bl

AlQ)=14+ag ' + ...+ an,qg ™ (10)
B(q) =big ' 4 ...+ bp, g™ (11)

where ¢~ denotes the shift operator. Using (10) the transfer
function of the system is formed as:

G(Qa U) - ‘i((gi

Since the method results in a discrete-time linear model,
the transfer function must be transformed into a continuous
system. The sampling time is set to 75 = 0.01s. Finally, the
following continuous-time model is formed as follows:

12)

s = Asxs + Bgus, (13)

ys = Csws, (14)

where A; is the system matrix, By is the input matrix and
C5 is the output matrix.
C. Design of the lateral control of the vehicle

The two state-space representations (6) and (13) are com-
bined into an extended form:

Te = Ac(Ve, p1)Te + Be(ve, p1)ue (15)
where u.=[us, My] and z. = [xs x,]7, while the matrices
are:

[ As ‘ 02w4 -|
Ae ) = 3 16a
(U pl) _Bv,l(vmvpl)cg ‘ Av(vzvpl)J ( )
[ By | 0221 ]
Be(vg, = , 16b
(U pl) _04:1:1 ‘ BU,Z(vzvpl)J ( )

in which B, ;(v., p1) denotes the i** column of B, (v,,p1).

The purpose of the control system is to ensure smooth
tracking of the predefined road, while the control signals have
as small as possible. The goals are formed by the following
three performances.

e Minimization of the lateral error The control algorithm
must minimize the deviation between the lateral position
of the vehicle y and the current lateral position of the
road ypey:

21 = Yref — Y, |Z1| — mina (17)

where y,.r is considered to be given.

o Minimization of the steering angle An inherent require-
ment is to minimize the control signals in order to
reduce the energy consumption.

29 = 0, |z2| = min. (18)

o Minimization of the differential drive Another require-
mentd is to minimize the intervention of the differential
driving.

23 = My, |z3| — min. (19)

The performances are summarized in the following vector
T .

z=[z1 2 23], which leads to the performance equa-

tion

z = Cixe + D117 + Digue, (20)

where C4, D11, D15 are matrices and r contains the signal
Yref-

In the LPV control design the extended state-space rep-
resentation (15) is used. In the design all of the measured
outputs and the input signals have to be scaled to construct
a suitable controller. In general, transfer functions are used
to weight the signals. The weighting functions and the
augmented plant are illustrated in Figure 6.

The weighting function W, 1 is used to scale the refer-
ence signal y,cs. W, 1, W, 2 and W, 3 are used to guarantee
the predefined performances. Moreover, the functions W, o
and W, 3 are used to ensure the trade-off between the
interventions. They are scaled, such a manner, to use rather



the differential drive than the steering, when the pressure of
the tire is low:

2
W, 2= =Gy, 21
DPest
pﬁ
W, 3= —LGy, (22)
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where (G; and G5 are first order transfer functions. The
reason of this scaling is that the reachable lateral force
decreases together with tire pressure. At low tire pressure,
the steering intervention is compensated with the differential
drive. The rest of the weighting functions W, 1, Wy, 2 and
W, 3 are attenuate the noises of the measurements.
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L
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Fig. 6. Structure of LPV controller

The LPV design task leads to a quadratic function that
must be minimized by choosing the appropriate K (v, p1)
controller, which guarantees that the closed-loop system is
quadratically stable. Further requirement is to ensure that
the induced norm Ls between the performances and the
disturbances is less than a given value ~.

inf sup sup =1l

; (23)
K(ve,p1) vy ,p1 €F, |lw||,#0,weLs [[wll

where I, bounds the scheduling variables. The computed
controller K (v,,p1) is formed as

(24a)
(24b)

tx = A (Vg p1)TK + Br (V2, p1)YK,
u = Cg(vg,p1)2x + D (Vz, 1)YK,

where AK(’Ul'apl)a BK(vIapl) and CK(’UIapl)a DK(vlapl)
are scheduling variable dependent matrices.

IV. SIMULATION RESULTS

Finally, the efficiency and the operation of the control
system is illustrated through a comprehensive simulation
example. In the simulations, the vehicle is driven along the
predefined track. In the first simulation, the vehicle is con-
trolled by a nominal controller without using any information
about the tire pressure. In the second case, the passenger car
is driven by the proposed control system including the tire
pressure estimation algorithm. In both cases, the pressure of
the front left tire is set to 1.2bar.

Figure 7 shows the paths of the vehicle for both simula-
tions. It can be seen that the in-built driver model is not able
to guarantee the tracking of the path at a sharp bend, because
in the control strategy the effect of the pressure loss is not
built into the model. Thus, the vehicle leaves the road, see
Figure 8 .

y position (m)

150 . . . . .
-400 -300 -200 -100 0 100 200
X position (m)

Fig. 7. Positions of the vehicles during the simulations

The proposed control system is able the ensure the trajec-
tory tracking of the vehicle due to the consideration of the
pressure loss.

= LPV control
CarMaker Driver
-60 |= = Reference
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Fig. 8. The bend where the driver leaves the road

Figure 9 shows the results of the estimations using dif-
ferent models. The blue line represents the estimation, when
only the measurable data is used with past values at constant
velocity. The red one illustrates the result of the scenario,
when the velocity varies. The green one is the scenario,
in which all signals are used during the estimation. The
estimation model provides bad results between 40sec and
50sec which is caused by the high side-slip angle and yaw
rate, such as sharp bends as shown in Figure 8(b).

The LPV controller computes the steering angle and the
differential drive using the estimated tire pressure and longi-
tudinal velocity. The computed interventions are illustrated in
Figure 10. As the first figure shows the LPV-based controller
provides lower steering angle at the sharp bend by which the
stability of the vehicle is maintained. The lowest steering
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angle is compensated by the differential torque shown in
Figure 10(b).
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Fig. 10. Control inputs of the system

The last figure illustrates the longitudinal velocity of
the vehicle during the simulation. As the figures shows,
the proposed LPV control system is able to guarantee the
trajectory tracking of the vehicle at different velocities.

V. CONCLUSIONS

This paper has proposed a new method, in which the esti-
mation of the tire pressures has been performed by a machine
learning technique. The main advantage of the proposed
algorithm is that only the commonly used sensor signals
are used for the estimation. The estimated tire pressures is
used as a scheduling parameter of the control system. The
control system is based on the LPV method, which uses the
longitudinal velocity as a scheduling parameter beside the

Veloctiy (m/s)

0 20 40 60 80 100
Time (s)

Fig. 11. Velocity of the vehicle

estimated tire pressure. Finally, a comprehensive simulation,
which is made in CarMaker vehicle simulation software,
illustrates the effectiveness of the proposed algorithm.

REFERENCES

[1] D. Fenyes, B. Nemeth, and P. Gaspar, “Analysis of autonomous
vehicle dynamics based on the big data approach,” European Control
Conference, pp. 219-224, 2018.

[2] D. Fényes, B. Németh, and P. Gaspdr, “Analysis of autonomous vehicle
dynamics based on the big data approach,” in European Control
Conference, June 2018, pp. 219-224.

[3] L.Li, E-Y. Wang, Q. Zhou, and G. Shan, “Automatic tire pressure fault
monitor using wavelet-based probability density estimation,” Vehicle
System Dynamics, pp. 80-84, 2003.

[4] H. Mayer, “Model based detection of tyre deflation by estimation of a
virtual transfer function,” Proceedings of IEEE Conference on Control
Applications, pp. 285-290, 1995.

[51 S. Solmaz, “A novel method for indirect estimation of tire pressure,”
9th Asian Control Conference (ASCC), 2013.

[6] F. Wang, H. Chen, H. Guo, and D. Cao, “Constrained h8 control for
road vehicles after a tire blow-out,” Mechatronics, pp. 371-382, 2015.

[71 H. Guo, F. Wang, H. Chen, and D. Guo, “Stability control of vehicle
with tire blowout using differential flatness based mpc method,”
Proceedings of the 10th World Congress on Intelligent Control and
Automation, pp. 2066-2071, 2012.

[8] I. Witten and E. Frank, Data Mining Practical Machine Learning Tools
and Techniques. Elsevier, 1999.

[91 Y. Wang and I. H. Witten, Pace Regression. (Working paper
99/12). Hamilton, New Zealand: University of Waikato, Department
of Computer Science., 1999.

[10] R. Rajamani, “Vehicle dynamics and control,” Springer, 2005.

[11] H. B. Pacejka, Tyre and vehicle dynamics. Oxford: Elsevier
Butterworth-Heinemann, 2004.

[12] L. Ljung, System identification: theory for the user.
Hall, 2003.

USA: Prentice-



