Vehicle odometry model identification considering dynamic load transfers - Université Grenoble Alpes Accéder directement au contenu
Communication Dans Un Congrès Année : 2020

Vehicle odometry model identification considering dynamic load transfers


The paper proposes a parameter identification method for a vehicle model using real measurements of on-board sensors. The motivation of the paper is to improve the localization of the vehicle when the accuracy of the regular methods is poor, e.g. in the case of unavailable GNSS signals, no enough feature for vision, or low acceleration for IMU-based techniques. In these situations the wheel encoder based odometry may be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty and unmodelled effects. The utilized vehicle model operates with dynamic wheel radius. The proposed identification method combines the Kalman-filter and least square techniques in an iterative loop for estimating the parameters. The estimation process is verified by real test of a compact car. The results are compared with the nominal setting, in which there is no estimation.
Fichier principal
Vignette du fichier
MED20__home_papercept_controls.papercept.net_www_conferences_conferences_MED20_submissions_0140_FI.pdf (518.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02940725 , version 1 (16-09-2020)



Máté Fazekas, Balázs Németh, Péter Gáspár, Olivier Sename. Vehicle odometry model identification considering dynamic load transfers. MED 2020 - 28th Mediterranean Conference on Control and Automation, Sep 2020, Saint-Raphaël, France. ⟨10.1109/MED48518.2020.9182873⟩. ⟨hal-02940725⟩
48 Consultations
261 Téléchargements



Gmail Mastodon Facebook X LinkedIn More