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Vehicle odometry model identification considering
dynamic load transfers

Mité Fazekas, Baldzs Németh, Péter Gaspar and Olivier Sename

Abstract— The paper proposes a parameter identification
method for a vehicle model using real measurements of on-
board sensors. The motivation of the paper is to improve the
localization of the vehicle when the accuracy of the regular
methods is poor, e.g. in the case of unavailable GNSS signals,
no enough feature for vision, or low acceleration for IMU-
based techniques. In these situations the wheel encoder based
odometry may be an appropriate choice for pose estimation,
however, this method suffers from parameter uncertainty and
unmodelled effects. The utilized vehicle model operates with
dynamic wheel radius. The proposed identification method
combines the Kalman-filter and least square techniques in an
iterative loop for estimating the parameters. The estimation
process is verified by real test of a compact car. The results
are compared with the nominal setting, in which there is no
estimation.

Index Terms— parameter identification, vehicle odometry,
sensor fusion, localization, dynamic load transfer

I. INTRODUCTION

With the appearance of autonomous vehicle functions,
vehicle localization become a key question in the automotive
industry. The position and orientation estimation can be
performed by several methods using a wide range of sensors,
such as camera, LiIDAR, GNSS, IMU and wheel encoders.
The perception based methods demand prior teaching and
well recognizable features, see [1]. The fusion of GNSS and
IMU measurements could be precise at higher velocities,
but it requires the current knowledge of the covariances of
signals. Furthermore, the GNSS signal can be unavailable
in some cases, e.g. parking in a garage, see [2], or among
tower blocks in urban areas. In these situations vehicle model
based odometry with wheel encoder measurements may be
the appropriate choice for vehicle localization. However,
this method suffers from parameter uncertainties, therefore
the estimation of some vehicle parameters is a required
capability.

In the automotive industry this type of localization appears
with the parking assist functions [3]. The examination of

M. Fazekas, B. Németh and P. Gaspar are with Systems
and Control Laboratory, Institute for Computer Science and
Control, Kende u. 13-17, H-1111, Budapest, Hungary. E-mail:

[mate.fazekas;balazs.nemeth;gaspar]@sztaki.hu

O. Sename is with GIPSA-lab, INPG, Université Grenoble Alpes,
11 Rue des Mathématiques, 38402 Grenoble, France. E-mail:
olivier.sename@gipsa-lab.grenoble—-inp.fr

The research was supported by the National Research, Development and
Innovation Office through the project ’Integration of velocity and suspension
control to enhance automated driving comfort in road vehicles’ (NKFIH
2018-2.1.13-TET-FR)

The work of Maté Fazekas was partially supported by the UNKP-19-
3 New National Excellence Program of the Ministry of Innovation and
Technology.

the used vehicle models is a well-explored area [3] and
[4]. However, high accurate pose estimation requires well-
calibrated vehicle models, but the precise parameter identi-
fication remains a challenge. The parameter identification is
an important task due to variations in the parameters resulted
from wheel changing or tyre wear. A detailed examination
can be found in our previous work in [5].

An examination of odometry errors is found in [6] and
its correction method based on a set of well-defined and
pre-programmed paths presented in [7] and [8]. Other al-
gorithms use perception sensor measurements, e.g. vision,
laser range finder or DGPS measurements, see [9]-[11]. The
disadvantage of these methods is the application of expensive
sensors. In a fully autonomous vehicle, it is desirable for self
calibration to be done without any pre-programmed paths or
specific marker. A self-adaptive identification method that
uses only cost effective GNSS measurements and handles
time delays of the sensors is proposed by [12].

The general method for state estimation is the well-known
Kalman-filter (KF) and for parameter identification is the
least squares (LS) method, see [13]. In a dynamic model
both the state and parameter estimation can be handled in
one filter, which is called Augmented Kalman-filter [9], [10],
[12]. However the parameters values are modified in every
timestep, therefore constant value is not achievable and the
effect of noise is significant.

The scope of this paper is to identify the vehicle odometry
parameters of a compact series car from real measurements
considering dynamic load transfers. In Section II the two-
wheel model of the odometry is presented. The core of
process is a unique solution, in which the Kalman-filter
is responsible for state estimation and the parameters are
identified with a non-linear least square technique in an
iterative loop. The algorithm is demonstrated in detail in the
Section IV. The advantages of the proposed method are the
lower effect of the measurements noises and the estimation
results in a stable value for the parameters. The test route is
segmented into sub-traces and the stable identified values are
obtained by computing its mean. The estimation results and
tests can be found in the Section V. Finally the contributions
of paper and future challenges are summarized in Section VI.

II. ODOMETRY MODEL WITH DYNAMIC LOAD TRANSFER

The dead-reckoning navigation is based on a model, of
which state vector x; contains the longitudinal and lateral
vehicle positions of the reference point xy, yi, which can be
the midpoint of rear track and the heading angle 6. The



position of the vehicle is calculated as

Tk = Tp—1 + vk - T -cos(Op—1 +wi-T/2), (la)
Yp = Yo—1 + vk - T -sin(0p—1 +wi - T/2),  (1b)
O =01 +wp-T. (Ic)

The inputs of system are the longitudinal v, and angular wy
velocities, which are calculated from the rear wheels in the
case of two-wheel odometry model as

(2a)
(2b)

v = (MRLk - CRLE +NRRK - CRRE)/(2-T),
wi = (NRRk - CRR,k — NRLK - CRLE)/(tr - T),

where n; is the rotation number of the wheel, ¢; , = 27r; i,
is the actual wheel circumference, tg is the rear track and
T is the sampling time. 7; j, is the rolling radius, define by
dividing the longitudinal and angular speed assuming zero
slip.

The slight change of the wheel radius due the effect
of vertical dynamic is generally neglected, because the
odometry based localization is widely used in low speed
circumstances i.e. automated parking. However, the sensor
measurements used for calibration are collected from normal
city and suburb driving, where the dynamic is certainly
higher. Therefore, the slight change due to the vertical
load transfer should be considered, thus the current wheel
circumferences used in our model are defined as

(3a)
(3b)

CRLk = Ce,RL + D - ay 1,

CRR,k = Ce,RR — D - ay 1,

where the c.; is the effective wheel circumference, a, . is
the lateral acceleration and D is a parameter that takes into
account the effect of vertical dynamics and will be descriebed
as load transfer coefficient. Thus, the model is suitable to the
parameter identification of a vehicle model, which is used in
scenarios where input excitation is significant.

Motivation of the dynamic wheel model

The effect of this dynamic change is illustrated in the fol-
lowing example. The optimal parameter values are calculated
by using a grid search method on a 476.8 m long sub-trace,
which contains a left turn with 16 m/s average speed, while
the route and the lateral acceleration are illustrated in Figure
1. The model parameters are determined in two cases based
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Fig. 1. Path and acceleration of the deviation effect example

on load transfer coefficients: first D1 = 0 and second with

adjustable parameter Ds. The optimal parameters and mean
position errors are the following:

Ce,rr1 = 196137 m  ce rr1 = 1.96355m tr1 =1.7Tm

Cenna = 1.96154m o pro = 1.96346 m tgy = 1.51 m

Erry =0.5510 m  Erro =0.5509 m Dy = 0.0011 s?

The optimal position errors are the same in each case and the
0.12% relative mean position error implies highly-accurate
localization with this model integrating more than 450 m.
The effective circumferences are mainly the same, however,
the optimal rear track values are very different, the real
value is around 1.53 m from the datasheet of the vehicle.
Therefore, the relatively low deviation parameter Dy has a
significant impact on the estimation, despite the fact that the
circumference change is only 5 mm as it is shown in Figure
2. Thus, consideration of dynamic load transfers is important
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Fig. 2. Circumferences of the deviation effect example

in the two-wheel odometry model calibration.

III. TEST VEHICLE AND MEASUREMENTS

The test vehicle is an electric compact car which is
equipped with GNSS, compass and IMU sensors and the
wheel encoder signals from the vehicle CAN bus is also
saved with a dSPACE MicroAutoBox and a Vector CAN
Interface measurement setup. The sampling frequency is 25
Hz, except the GNSS in which only 5 Hz. The sensors
are cost effective automotive grade types. The test track is
a 11.82 km long way in suburban and city driving. The
route contains several bends, two roundabouts and some
crossroads. The longitudinal velocity is in the interval 0 — 20
m/s. Because of the heavy traffic and lights it is highly
varying with the average of 9.6 m/s. The yaw rate is between
—0.7 and 0.7 rad/s and the lateral acceleration is between
—4 and 4 m/s?.

A. Measurement fusion

GNSS and IMU measurements are fused to reach absolute
position and orientation values X = [Zy, Jx,0%]T, which
are utilized to identify the parameters. This fusion method
has been investigated already in a wide range of papers



considering the dynamic equation of p = a, where p is the
position and a is the acceleration. The implemented method
is similar to [14]. In this fusion the measurements of wheel
encoders are not used.

B. Route segmentation and selection

The test track is divided into sub-traces for the identi-
fication to eliminate the effect of error accumulation. The
procedure is based on time to provide equal number of
measurement points for the LS estimation in each sub-
trace. The determination of subdivision length is based on
two factors. If the value is low, the effect of actual pose
measurement noises is high, which can result in a biased
parameter identification. But, if the value is too high, the two
wheel model is integrated over hundreds of meters, where
the model can drift easily from the measurements, which
results in incorrect estimation as well. However, the KF
before the LS identification in the iterative loop eliminates
the possibility of drift, thus the selected time length is 22.5
s, which results in an average sub-trace length of 200 m.
Due to the fact that, the track and deviation parameters are
contained just in the angular velocity equation, only the sub-
traces with higher than 0.15 rad/s absolute maximum yaw
rate is selected for the identification.

IV. ITERATIVE PARAMETER IDENTIFICATION METHOD

The accuracy of localization highly depends on the cali-
bration of the vehicle model. The most significant parameters
are the wheel circumferences, because the angular velocity is
based on the difference of traveled distances by the wheels.
Therefore, a little deviation from the true values may result
in high error. The track width and load transfer coefficients
are also important in the estimation in order to achieve a
global optimum setting. The identification method operates
with the Kalman-filtering for optimal state fusion and with
the least square regression for estimating parameters.

The two-wheel odometry model in (1) results in the
following nonlinear description

Xk = f(Xk:—lauk—lalﬁ)a (5)

in which the inputs are the measured wheel rotation number
ni,—1 of the encoders and the state vector contains the
vehicle position and ¥ contains the parameters as

Xk =[ze ye Ok, (6a)
U, = MRk MRRK (6b)
VU =ce,rL Cerr tr DI (6¢)

The parameters are identified from position and orientation
values, which are also estimated and indicated with

Xe=[T gk O] (7)

The parameter identification method has two main layers,
in which the Kalman-filtering and the least squares optimiza-
tion are connected together in an iterative way. This approach
can also be feasible for identification of Hammerstein and

Wiener models, see in [15]. The process of iterative solution
is illustrated in Figure 3.
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Process of the iterative parameter identification (KF-LS identifica-

A. Kalman-filter for state estimation

The core of method is an Extended Kalman-filter, which
uses the wheel encoders as inputs and the fused position and
orientation values as measurements. Moreover, the nonlin-
earity is approximated with the first derivative of the system
model. The filtering of X, = [k, %k, 0k]T is performed
in two steps, where the prediction is based on the model
(8b), and in the innovation the measurements are utilized
to improve the estimation (8e). The states and covariance
matrix are calculated as

X, = f(Xp—1,up-1) (8a)
Y, = RS P+ P, (8b)
G =Y, HY (HyS, HiE + M)™1, (8c)
X, =%, + Gr(yr — h(%})) (8d)
Y = (I — GLHp)%y,, (8e)

where the Jacobians are stated as follows and computed using
the previous timestep values as
Of(x,u)

=S :

o Hy =1, ©))

X=Kp—1,U=Ug_1

where h(x) is the measurement equation, which is h(x) =
[Tk, Uk, Ok]T = yr = Tp. G} is the Kalman-gain factor,
which ensures the optimal estimation of the states and
guarantees the minimum covariance. The estimation highly
depends on the P and M matrices, which are the model and
measurements covariances.

B. Least squares method for parameter estimation

The parameters are identified with the least square re-
gression method. The LS approximation is the conventional
method when algebraic equations can be formed between
the measurements and estimated parameters. The relationship
is generally formulated as y; = ¢p + €k, where yj is
the measurement, ¢, contains algebraic functions and other
measurements, € symbolizes the measurement noise and 9 is
the parameter vector to be identified. In the presented method
the fused pose measurements X, the filtered states X from
the previous Kalman-filter and the vehicle model is used to
formulate the LS equation as

Tp — Tp_1 vg T - COS(ak_l + ka'T)
Uk = Ok-1 | = | v T-sin(Op_y + %) (10)
O — Op—1 wy T

Yk g(9,k)



The vehicle model results nonlinear problem, however lin-
earization can be perform if initial ¥ value can be assumed.
Using the Taylor-approximation as

0g9(9, k

vi = g(0, k) = g(do, k) + 999 k) (0 —do), (D

a9 |y,

and introducing the following notations
ag(v, k
zk = yx — 9(Vo, k) + % Yo, (12a)
)
9g(0, k)

=227 12b
o o0 |, (12b)

the nonlinear estimation task with local linearization is
transformed into the general linear LS form. From the zj
and ¢y, values Z and ® matrices are constructed, respectively.
The estimated parameter vector is

= (@"we) teTwz, (13)

where W is a positive definite weighting matrix.

C. Parameter identification in the iterative design

New values are identified for the parameters with the LS
method. However two facts must be taken into consideration.
First, the Kalman-filtering operates with the actual param-
eters and the filtered states are used in the LS parameter
identification, thus with the new parameters new LS problem
is generated. Second, the used LS equation operate with
the first order Taylor-coefficient of the nonlinear function,
therefore the approximation is precise only close to the
value used for local linearization. Thus, iterative method is
proposed and the change of parameter values are limited in
the iterations. The new value for the parameter vector is

Ui =Vic1 +a (0 —9i_1), (14)

where ¢ is the iteration step and « is a tuning parameter
with the value of 0 < o < 1 and it is named as learning rate.
Position error with the resulted parameters is calculated from
the fused measurements and the estimation is stopped, when
the mean error starts to increase or the maximum iteration
number is reached.

D. Tuning method of the iterative process

Generally the covariance matrices of the Kalman-filters
M and P should be adjusted to the standard deviation of
the measurements and used model. However, in practical
applications these values are unknown, but the position is in
meter and the angle is in radian, therefore the noise of angle
is assumed to be lower. Furthermore, in our estimation the
main goal is the identification of true parameter values and
the KF must ensure this. During the iterations the model
becomes more precise, therefore varying covariances are
proposed as

M = diag([1,1,0.1)) P = diag ([? 4 0.01pD

i9’ 497 44

where ¢ is the actual iteration number and ¢ is a variable in
the range of 1 < ¢ < 2, in this identification ¢ = 1.3 and
p =5 is used.

In the LS estimation the change of parameter vector
value must be limited between two iteration steps due to
the linearization, thus o = 0.1 is chosen for learning rate.
W weighting matrix symbolizes the noise of equations and
because only the ratio of values is significant the matrix is
stated, such as W = diag ([1/1%,1/12,1/0.1?]), due to the
effect of 1 m position and 1 rad orientation error. Detailed
explanations are in our previous work, see [5].

E. Estimation sequence

In Section II the illustrative example showed the inter-
action of the model parameters and the problem of the
local optimum. Thus, the selection of appropriate initial
parameters are necessary. Since there is no any apriori
information about the tyre wear, equal values are assumed.
However, the difference of circumferences has a high impact
on the calculation of angular velocity. Therefore, first only
the circumferences are identified and after the track and load
transfer coefficient are estimated also.

V. EXPERIMENTAL RESULTS

In this section the proposed identification method is pre-
sented on the test track. The KF-LS based estimation is
performed in each sub-trace. First the identification method
is demonstrated on a sub-trace illustrating the iteration steps
in details. Second, the method is presented on the case of
circumference estimation and third, the estimation of the
track and load transfer coefficient is illustrated. Some sub-
trace are eliminated, because the resulting position error
or the estimated parameter values highly differ from the
others. These may be the consequences of higher mea-
surement noise on the initialization point of the sub-trace
or the wheel slipping. The general indication of the pa-
rameter vector is 191;_1-, where s means the circumference
estimation (circ) and the final identification ( fin) of every
parameter, ¢ is the iteration number (ix is the optimal)
and ¢ denotes the sub-trace number. The initial value for
the parameters are the nominal ones, which are based on
the wheel diameter and vehicle’s datasheet. The values are

[Ce,RL,’rw’rru Ce,RR,nom tR,noma Dno’m] = [27 27 155a O]

A. Estimation method illustration

The iterative identification procedure is presented in a
given sub-trace in the case of circumference estimation. The
mean position errors calculated from the fused measurements
and the estimated circumferences can be found in Figure 4.
At zero the error and circumferences indicates the nominal
setting.

The nominal error is 21.13 m, but with the identified
values at iteration 10 the error is only 1.75 m, thus the
identification results 12 times better for the vehicle odometry
localization. However, it is necessary to take into account
that the resulted setting is related only to this sub-trace.
Furthermore, in Figure 4 the slight difference between the
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estimated circumferences can be seen, which have already
appeared significantly at the third iteration. In Figure 5 the
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Fig. 5. Paths of the iterations

fused measurements, the nominal path and the paths of
iterations can be found. The change is significant in the first
few iteration and the resulted in path at the final iterations
fits properly to the fused measurements.

B. Initial wheel circumference estimation

The same algorithm is used in every sub-trace for initial
circumference estimation and the resulted wheel circum-
ferences can be found in Figure 6. The initial parameter
values are the nominals 1§m‘ra,0 = [Ce.RL.nom» Ce.RR.nom) -
The estimated values are in a 6 mm range for each wheel
and the standard deviation is only 1.4 mm. Therefore the
convergence to the true value is occured. The mean position
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Fig. 6. Estimated circumferences of the initial circumference estimation
errors can be found in Figure 7, with the estimated circum-
ferences the model results 3.5 times lower error, the mean
error of the sub-traces is 1.24 m. The difference between
the circumferences is 1.99 mm, but despite its low value,
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Fig. 7. Position errors of the initial circumference estimation

its impact is significant. The stable estimated value of the

circumferences are the mean of the estimated sub-trace ones

_ qt
as [Ce,RL,circ ce,RR,circ] - ﬁcirc,i*'

C. Final estimation of the parameters

Finally, the track and the load transfer coefficient are
identified. In the previous sub-section we can see that the
estimated slight circumference difference has a high im-
pact on the position error. However these wheel parameters
are calculated with a-priori track and zero deviation ratio
parameters, thus these can be local optimums. Therefore
with the tr and D parameter the circumferences are also
estimated in parallel, with initial value of the previous
determined ones. The theta vector contains every param-
eter Vg = [tR,Ce.RL, Ce.rR, D]T and its initial value
is ﬂfin,O = [tR,nom Ce,RL,circ Ce,RR,circ Dnom]' In
Figure 8 the mean position error of the sub-traces of the
previous circumference and actual estimation can be found.
Only every 4th sub-trace is shown for better view. With the
dynamic model the mean error of the sub-traces decreases
significantlyto 0.92 m. In Figure 9 the estimated circumfer-
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ence load transfer coefficient can be found. The mean of
the sub-traces is 7.4357x10~* s2. The standard deviation



is significant, 1.5845x10~* s> which may be related to
the previous mentioned extreme situations, therefore further
improvement is possible. However, the 0.92 m mean position
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Fig. 9. Estimated load transfer coefficient of the sub-traces

error in a 200 m long route only with the usage of wheel
rotation encoders is an outstanding result.

D. Final results and test

The test track is segmented into sub-traces, thus the
previous results connecting to the sub-traces, where the used
model contains the local estimated parameters. However, this
process helps to eliminate the sub-traces containing incorrect
measurements or non-modeled errors e.g. wheel slips. But,
concrete parameter values are required for the calibrated
model, which are the avergare of the sub-trace identified
values as

Ce,RL,opt = 1.9558 m,
Ce.RR.opt = 1.9578 m,
tR.opt = 1.5138 m,
Dopr = 7.4357x1074 2.

After the identification the calibrated two-wheel model
with the identified parameters is tested on the whole route
with different integration time length. With 10 s the mean
route length is 100 m and the resulted position errors of
the nominal and calibrated settings can be found in Figure
10. The mean error with the identified model is 0.67 m, the
relative error is 0.58% and it is 4 times better than the result
of the nominal setting.

VI. CONCLUSIONS

The paper proposes an iterative parameter identification
algorithm for two-wheel vehicle model taking into account
dynamic load transfer. The algorithm results in high accuracy
estimation, because the measurement noises have lower ef-
fect due to the constructed LS task. The rear circumferences,
track width and the load transfer coefficient identified from
real measurements of onboard sensors. The main contribution
is the improvement of pure kinematic model to account
the dynamic effects and the calibration of it from highly
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Fig. 10. Position errors of the test

uncertain initial parameter values and noisy measurements.
As a future challenge, the applied vehicle odometry model
might be improved through the consideration of the side slip.
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