Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Vehicle odometry model identification considering dynamic load transfers

Abstract : The paper proposes a parameter identification method for a vehicle model using real measurements of on-board sensors. The motivation of the paper is to improve the localization of the vehicle when the accuracy of the regular methods is poor, e.g. in the case of unavailable GNSS signals, no enough feature for vision, or low acceleration for IMU-based techniques. In these situations the wheel encoder based odometry may be an appropriate choice for pose estimation, however, this method suffers from parameter uncertainty and unmodelled effects. The utilized vehicle model operates with dynamic wheel radius. The proposed identification method combines the Kalman-filter and least square techniques in an iterative loop for estimating the parameters. The estimation process is verified by real test of a compact car. The results are compared with the nominal setting, in which there is no estimation.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-02940725
Contributeur : Olivier Sename <>
Soumis le : mercredi 16 septembre 2020 - 14:54:10
Dernière modification le : mardi 20 octobre 2020 - 15:37:25

Fichier

MED20__home_papercept_controls...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02940725, version 1

Collections

Citation

Máté Fazekas, Balázs Németh, Péter Gáspár, Olivier Sename. Vehicle odometry model identification considering dynamic load transfers. 28th Mediterranean Conference on Control and Automation, Sep 2020, SAINT RAPHAEL, France. ⟨hal-02940725⟩

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

26