Design of saturated controls for an unstable parabolic PDE - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2019

Design of saturated controls for an unstable parabolic PDE

Résumé

We derive a saturated feedback control, which locally stabilizes a linear reaction-diffusion equation. In contrast to most other works on this topic, we do not assume Lyapunov stability of the uncontrolled system, and consider general unstable systems. Using Lyapunov methods, we provide estimates for the region of attraction for the closed-loop system, given in terms of linear and bilinear matrix inequalities. We show that our results can be used with distributed as well as scalar boundary control. The efficiency of the proposed method is demonstrated by means of a numerical simulation.
Fichier principal
Vignette du fichier
2018-NOLCOS-MPW-Saturations_27_06_2019-Final.pdf (317.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02294080 , version 1 (23-09-2019)

Identifiants

Citer

Andrii Mironchenko, Christophe Prieur, Fabian Wirth. Design of saturated controls for an unstable parabolic PDE. MECHATRONICS 2019 - NOLCOS 2019 - 8th IFAC Symposium on Mechatronic Systems - 11th IFAC Symposium on Nonlinear Control Systems, Sep 2019, Vienne, Austria. ⟨10.1016/j.ifacol.2019.11.797⟩. ⟨hal-02294080⟩
156 Consultations
199 Téléchargements

Altmetric

Partager

More