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Abstract: We derive a saturated feedback control, which locally stabilizes a linear reaction-
diffusion equation. In contrast to most other works on this topic, we do not assume Lyapunov
stability of the uncontrolled system, and consider general unstable systems. Using Lyapunov
methods, we provide estimates for the region of attraction for the closed-loop system, given
in terms of linear and bilinear matrix inequalities. We show that our results can be used
with distributed as well as scalar boundary control. The efficiency of the proposed method
is demonstrated by means of a numerical simulation.
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1. INTRODUCTION

Saturated control is one of the most natural nonlinearities
to be considered in control theory, because physical inputs
are often limited in amplitude. Neglecting this nonlinearity
in the control design could lead to undesirable behavior of
the solutions to the closed-loop system, and to shrinking
of the attraction region of the closed-loop system (see
e.g. Tarbouriech et al. (2011); Zaccarian and Teel (2011);
Saberi et al. (2012)). This leads to the problem of (local
or global) stabilization of control systems via inputs of a
norm not exceeding a prescribed value.

In this paper, a linear unstable reaction-diffusion equation
is introduced. Many results exist in the literature for the
control of this class of partial differential equations (PDE),
using either bounded or unbounded control operators, with
or without input delays. See in particular Krstic (2009);
Krstic and Smyshlyaev (2008) for the delayed control using
a backstepping approach; see Fridman and Orlov (2009)
where a stable heat PDE is controlled by means of a
delayed bounded linear control operator.

As far as input saturations and synthesis of saturated
controllers for infinite-dimensional systems are concerned,
see Slemrod (1989); Lasiecka and Seidman (2003) for the
first studies of PDEs with constrained controllers. In these
results, the saturation map has to be understood as a
limitation on the space norm of the input function, and
not as as a pointwise saturation, which limits the values
of the control input at each point by a prescribed value.

Other types of saturation functions can be useful in prac-
tice, see Marx et al. (2017b) for a discussion. Regarding
the saturation map definition, our definition fits the one of
Prieur et al. (2016) where Lyapunov methods are shown
to be useful for the stability analysis of wave equations

subject to saturated inputs. See also Marx et al. (2017b,a),
where systems in Hilbert spaces with applications to the
Korteweg–de Vries equation have been addressed.

In this conference paper, for the unstable reaction-diffusion
system we derive a saturated controller for two cases:
firstly, for static in-domain control (through a bounded
control operator), and secondy for dynamic boundary con-
trol (through an unbounded control operator). In both
cases, pointwise saturated feedback laws are designed.
Moreover the developed Lyapunov approach yields numer-
ically tractable procedures for the synthesis of the control
gains, and for the estimation of the basin of attraction of
the closed-loop system. Let us emphasize that, contrary to
the works Slemrod (1989); Lasiecka and Seidman (2003);
Prieur et al. (2016), in our paper the open-loop system is
unstable, therefore controlling the system with a saturating
controller only provides local asymptotic stability, parallel-
ing what is known for finite-dimensional systems (see in
particular Teel (1992)).

To solve the design problem of saturated controllers, we
first isolate the finite number of unstable modes and then
we apply classical finite-dimensional techniques for the sta-
bilization of the unstable part (see e.g. Tarbouriech et al.
(2011); Zaccarian and Teel (2011); Saberi et al. (2012)).
This yields a Lyapunov function of the unstable state
part and linear and bilinear matrix inequalities (LMIs and
BMIs) to be considered for the estimation of the region
of attraction of the closed-loop finite-dimensional system
(see Boyd et al. (1994); Scherer and Weiland (2000);
Van Antwerp and Braatz (2000) for an introduction on
matrix inequalities). Then, incorporating the other part
of the state of the reaction-diffusion equation, we show
how asymptotic stability and estimates for the region of



attraction can be obtained when closing the loop with the
nonlinear saturated controller.

In this light, our approach may be useful for all infinite-
dimensional systems for which there exists only a finite
number of unstable modes to be controlled through a
bounded control operator (e.g. for systems with input
delays considered in e.g. Fiagbedzi and Pearson (1986)).

The paper is organized as follows. We first introduce the in-
domain control problem for the reaction-diffusion equation
in Section 2. A saturated feedback is designed in Section
3 and a region of attraction is estimated. Some numerical
simulations illustrate our results in Section 4. In Section
5, we show how our results could be applied to unbounded
control operator, when designing a stabilizing dynamic
saturated controller.

Due to the page limitations we omit most of the proofs in
this paper, which can be found in a journal version of this
paper Mironchenko et al. (2019).

Notation: The Euclidean norm on IRn is denoted by
| · |, the operator norm induced by this norm on spaces
of matrices is denoted by ‖ · ‖. We denote the interior
of a set S in a topological space by intS. The ball of
radius ε around 0 is denoted by Bε(0). For convenience,
we denote IN∗ := IN \ {0}. For L > 0, Hk(0, L) denotes
the Sobolev space of functions from the space L2(0, L),
which have weak derivatives of order 6 k, all of which
belong to L2(0, L). Hk

0 (0, L) is the closure of Ck0 (0, L) (the
continuous functions with compact support in (0, L)) in
the norm of Hk(0, L).

2. PROBLEM FORMULATION

We consider the stabilization problem of the heat equation
by means of a distributed control u : IR+ → IRm. Let
L > 0. We are given m functions bk : [0, L]→ IR describing
at which places the control input uk is acting. We have

wt(t, x) = wxx(t, x) + c(x)w(t, x)

+

m∑
k=1

bk(x)sat(uk(t)), t > 0, x ∈ (0, L),

w(t, 0) = w(t, L) = 0, t > 0,

w(0, x) = w0(x), x ∈ (0, L).

(1)

We assume that the state space of this system is X :=
L2(0, L) and that c, bk ∈ X, k = 1, . . . ,m.

Here sat is a component-wise saturation function, that is,
for all k = 1, . . . ,m and for any v ∈ IRm,

sat(v)k :=

vk if |vk| 6 `
`

|vk|
vk if |vk| > `,

(2)

where ` > 0 is the given level of the saturation, which is
assumed to be uniform with respect to the index k.

Remark 1. Systems of the form (1) also occur in the
problem of stabilizing a linear heat equation by means of a
boundary control subject to delays or saturations, see e.g.
Prieur and Trélat (2019) as well as Section 5 below. ◦

Define the operator

A = ∂xx + c(·)id : X → X (3)

with domain D(A) = H2(0, L)∩H1
0 (0, L). Then the above

control system takes the form

wt(t, ·) = Aw(t, ·) +

m∑
k=1

bksat(uk(t)). (4)

We note that A is selfadjoint and has compact resolvent,
see (Mironchenko et al., 2019, Appendix A). Hence, the
spectrum of A consists of only isolated eigenvalues with
finite multiplicity (see (Curtain and Zwart, 1995, Lemma
A.4.19) and (Curtain and Zwart, 1995, Example A.4.26)).
Furthermore, there exists a Hilbert basis (ej)j>1 of X
consisting of eigenfunctions of A, associated with the
sequence of eigenvalues (λj)j>1. Note that

−∞ < · · · < λj < · · · < λ1 and λj −→
j→+∞

−∞

and that ej(·) ∈ D(A) for every j > 1.

We consider the mild solutions of the system (1) (see
(Curtain and Zwart, 1995, Section 3.1)), which exist and
are unique for any initial condition in X and for any uk
that is in L1,loc([0,∞)), for k = 1, . . . ,m.

Every (mild) solution w(t, ·) ∈ D(A) of (4) can be
expanded as a series in the eigenfunctions ej(·).

w(t, ·) =

∞∑
j=1

wj(t)ej(·),

wj(t) := 〈w(t, ·), ej(·)〉L2(0,L), j ∈ IN∗.

(5)

Analogously, we can expand the coefficients bk in the series

bk(·) =

∞∑
j=1

bjkej(·), bjk = 〈bk(·), ej(·)〉L2(0,L), j ∈ IN∗.

Using the mild formulation of the problem (4), we thus get
that (4) is equivalent to the infinite-dimensional control
system

ẇj(t) = λjwj(t) +

m∑
k=1

bjksat(uk(t)) (6)

= λjwj(t) + bj · sat(u(t)), j ∈ IN∗, (7)

where ’·’ is a scalar product in IRm, sat(u(t)) ∈ IRm is the
vector with entries sat(uk(t)) and bj is the row vector with
entries bjk, k = 1, . . . ,m.

Let n ∈ IN∗ be the number of nonnegative eigenvalues of
A and let η > 0 be such that

∀j > n we have λj < −η < 0. (8)

With the matrix notations

z :=

w1

...
wn

,A :=

λ1 · · · 0
...

. . .
...

0 · · · λn

,B :=

b11 · · ·b1m...
...

bn1 · · ·bnm

 (9)

the n first equations of (6) form the unstable finite-
dimensional control system

ż(t) = Az(t) + Bsat(u(t)). (10)

3. ESTIMATION OF THE REGION OF
ATTRACTION FOR SATURATED INPUTS

3.1 Decomposition of the system into stable and unstable
part

We now introduce a decomposition of the state space into a
finite dimensional space on which the stabilization problem
has to be solved and its orthogonal complement, which is
invariant under the free dynamics.



Let Xn be the subspace of L2(0, L) spanned by e1(·), . . . ,
en(·) and let πn be the orthogonal projection onto Xn,
that is

πnw(t, ·) :=

n∑
j=1

wj(t)ej(·). (11)

We define also X⊥n as the orthogonal complement of Xn

in X. Let ι : IRn → Xn be the isomorphism defined by
ι(ej) = ej(·), where (ej)j=1,...,n is the canonical basis of
IRn. It will be useful to use the isometric representation
of L2(0, L) as `2(IN∗, IR) obtained by the isomorphism
ej(·) 7→ ej , where

`2(IN∗, IR):={(xk)k∈IN∗ : xk ∈ IR ∀k ∈ IN∗,

∞∑
k=1

|xk|2<∞}.

Corresponding to the decomposition L2(0, L) = Xn

⊕
X⊥n ,

where ”
⊕

” is the orthogonal sum of subspaces, we denote
`2(IN∗, IR) = IRn⊕ `2j>n, where we identify IRn with the

sequences with support in {1, . . . , n} and `2j>n is the set of

sequences in `2(IN∗, IR) which are 0 in the first n entries.

Given a linear map K : Xn → IRm, consider the following
feedback control

u(t) =Kπnw(t, ·) = K
( n∑
j=1

wj(t)ej(·)
)

=

n∑
j=1

wj(t)Kej(·)

=

n∑
j=1

wj(t)Kj = Kz(t), (12)

where Kj := Kej(·) ∈ IRm, j = 1, . . . , n, and where
we use in the final step the notation from (9) and set
K := (K1, . . . ,Kn) ∈ IRm×n.

Hence the system (6) with the feedback (12) is equivalent
to the following set of differential equations:

ẇj(t) = λjwj(t) + bj · sat(Kz(t)), j = 1, 2, . . . (13)

Using the notation (9), we can rewrite the first n equations
of this system as

ż(t) = Az(t) + Bsat(Kz(t)). (14)

Now, (13) can be considered as a cascade interconnection
of an n-dimensional part, described by the equations
(14) and of an infinite-dimensional part described by the
equation

ẇj(t) = λjwj(t) + bj · sat(Kz(t)), j > n+ 1. (15)

Next we show that the problem of exponential stabilization
of the overall system (6) boils down to the exponential sta-
bilization of the finite-dimensional unstable system (10).
This latter problem will be elaborated in Section 3.2.

Definition 1. Assume that K is chosen so that 0 is a
locally asymptotically stable fixed point of (14). We say
that S is a region of attraction of 0 if (i) 0 ∈ intS; (ii)
for any z0 ∈ S the corresponding solution z(t; z0) → 0 as
t→∞; (iii) S is forward invariant, i.e. for any z0 ∈ S it
holds that z(t; z0) ∈ S for all t > 0. The largest set (with
respect to set inclusion) with these three properties is called
the maximal region of attraction.

Definition 2. We say that (14) is locally exponentially
stable with region of attraction S, if the following two
conditions are satisfied:

(i) there exist ε,M, a > 0 such that for any initial
condition z(0) ∈ X satisfying |z(0)| < ε, it holds

|z(t)| 6Me−at|z(0)| ∀t > 0.

(ii) Bε(0) ⊂ S and S is a region of attraction of (14).

Definitions 1 and 2 can be stated analogously for the
system (13).

Proposition 1. Assume K is chosen such that the sub-
system (14) is locally exponentially stable in 0 with region
of attraction S ⊂ IRn. Then:

(i) system (13) is locally exponentially stable in 0 with
region of attraction S × `2j>n.

(ii) (1) with the controller (12) is locally exponentially
stable in 0 with a region of attraction ι(S)×X⊥n .

In addition, for any closed and bounded set G ⊂ int (ι(S)×
X⊥n ), there exist two positive values M and a such that for
any initial condition w(0, ·) in G, the solution w(·) to (1)
with the controller (12) satisfies

‖w(t, ·)‖X 6Me−at‖w(0, ·)‖X ∀t > 0. (16)

Proof. Pick a compact subset G′ of intS. Since we assume
that (14) is locally exponentially stable with region of
attraction S ⊂ IRn, it is well known that there exist
M,a > 0 so that for all z(0) ∈ G′ the solution z to (14)
satisfies |z(t)| 6Me−at|z(0)|. From equations (6) and (12),
we derive that for j = n+ 1, . . . ,∞, for any t > 0 and for
any (wn+1(0), wn+2(0), . . .) in `2j>n it holds that

wj(t) = eλjtwj(0) + bj ·
∫ t

0

eλj(t−s)sat(Kz(s))ds.

From (2) it follows that for all z ∈ IRn we have

|sat(Kz)| 6 |Kz| 6 ‖K‖|z|.
Also due to Cauchy-Bunyakovsky-Schwarz inequality we
have that, for all j = 1, 2, . . .,

|bjk| =
∣∣∣〈bk(·), ej(·)〉X

∣∣∣ 6 ‖bk‖X‖ej‖X = ‖bk‖X . (17)

Thus, for all j = n + 1, n + 2, . . ., we obtain (exploiting
(17)) that

|wj(t)| 6e−ηt|wj(0)|+ |bj |
∫ t

0

e−η(t−s)|Kz(s)|ds

6e−ηt|wj(0)|+ |bj |‖K‖
∫ t

0

e−η(t−s)Me−as|z(0)|ds

=e−ηt|wj(0)|+ |bj |
M‖K‖
η − a

(e−at − e−ηt)|z(0)|.

The above computations have been performed for the case
when η 6= a. If a = η, then it holds that

|wj(t)|6 e−ηt|wj(0)|+M |bj |‖K‖te−ηt|z(0)|.

Now, using the inequality (a + b)2 6 2(a2 + b2) for any
(a, b) ∈ IR2, and the square summability of |wj(0)| and
|bjk|, k = 1, . . . ,m, it follows that

∑∞
j=n+1 |wj(t)|2 decays

exponentially as well.

We now obtain local exponential stability of (13) by
choosing G′ such that 0 ∈ IRn is in the interior of G′ and
noting that then 0 ∈ X is in the interior of ι(G′)×X⊥n .

For the final statement of the proposition, pick a closed
and bounded set G ⊂ int (ι(S) × X⊥n ). Select G′ = ι−1 ◦
πn(G), then G′ is a compact subset of intS, the previous



computations yield (16) for suitable constants M and a
and for the superset ι(G′)×X⊥n which contains G. 2

3.2 Estimate of the maximal region of attraction for the
finite-dimensional part

In view of Proposition 1, it is important to study the
local exponential stability and to estimate the region
of attraction of the finite-dimensional system (14). We
perform this task in this section. We assume here that
z ∈ IRn, A ∈ IRn×n, B ∈ IRn×m and K ∈ IRm×n. Recall
system (14) one more time:

ż = Az + Bsat(Kz). (18)

Remark 2. If a feedback K renders the closed-loop sys-
tem (18) locally asymptotically stable, then also

ż = Az + Bu (19)

is locally and hence globally asymptotically stabilized
by means of the feedback u(t) := Kz(t). Thus, local
asymptotic stability of (18) implies that the pair (A,B)
is stabilizable.

We note that in the case m = 1 the situation simplifies
further as then (19) is a linear diagonal system with
scalar control input. The criterion for stabilizability is
then that bj1 6= 0 for all j = 1, . . . , n and λk 6= λj for
all k, j = 1, . . . , n, k 6= j (which is an easy exercise). In
other words, the localization function b1 should not be
orthogonal to an unstable eigenfunction and all unstable
eigenvalues need to be simple. ◦
Proposition 2. Consider system (18) with A ∈ IRn×n,
B ∈ IRn×m and K ∈ IRm×n. Assume that there exist a
symmetric positive definite matrix P ∈ Rn×n, a diagonal
positive definite matrix D ∈ Rm×m and a matrix C ∈
Rm×n such that

M1 :=

[
(A + BK)>P + P (A + BK) PB− (DC)>

(PB)> −DC −2D

]
< 0 (20)

and

M2 :=

[
P (K−C)>

K−C `2Im

]
> 0. (21)

Then the finite-dimensional system (18) is locally asymp-
totically stable in 0 with a region of attraction given by

A := {z, z>Pz 6 1}. (22)

Moreover, in A, the function V1 defined by V1(z) :=
z>Pz, z ∈ IRn, decreases exponentially fast to 0 along the
solutions to (18), i.e. there is a constant α > 0 so that

V̇1(z) 6 −α|z|2, z ∈ A. (23)

The main interest of Proposition 2 lies in the following
consequence for system (1).

Theorem 1. Consider system (1) along with the feedback
K of (12). Assume that the matrix representation K is
such that the assumptions of Proposition 2 are satisfied.
Then the closed-loop system

wt(t, x) = wxx(t, x) + c(x)w(t, x)

+

m∑
j=1

bk(x)sat((Kπnw(t, ·))k), t > 0, x ∈ (0, L),

w(t, 0) = w(t, L) = 0, t > 0, (24)

w(0, x) = w0(x), x ∈ (0, L).

is locally exponentially stable in 0 with region of attraction
ı(A) × X⊥n . In addition, the constants of decay can be
chosen uniformly on ı(A)×X⊥n .

4. NUMERICAL EXPERIMENT

In this section we use Proposition 2 to obtain estimates of
the region of attraction for the unstable heat equation (1)
subject to a saturated feedback controller. Let c(·) in the
equation (1) be a constant function, and we slightly abuse
the notation by saying that c(·) = c = const.

According to (Henry, 1981, pp. 16-17) the eigenvalues of
the operator A := ∂xx + c id : X → X on the domain
D(A) = H2(0, L) ∩H1

0 (0, L) are given by

λj := −π
2

L2
j2 + c, j ∈ IN∗, (25)

and the eigenfunctions ej , j ∈ IN∗ of (A,D(A)), which
form a basis of L2(0, 1), are given by

ej(x) :=
( 2

L

)1/2
sin

jπx

L
, j ∈ IN∗, x ∈ (0, L). (26)

The simulation results provided below, were obtained for
the following parameter values:

c(x) ≡ 10, L = 2, ` = 2, b = e1 + e2,

where ei are defined in (26). This choice results in the
following values for the matrices A,B:

A =

(
7.5325989 0.

0. 0.1303956

)
, B =

(
1
1

)
.

The system (19) is stabilizable in view of Remark 2. Dif-
ferent choices of the matrix K for the stabilizing feedback
u(t) = Kz(t) lead to different attraction rates and dif-
ferent region of attractions. We demonstrate this by two
examples.

We choose the matrix K so that σ(A + BK) =
{−0.1,−0.2}. The resulting matrix K is:

K = (−7.9732782 0.0102837) . (27)

Based on Proposition 2, we solve the inequalities (20), (21)
together with additional constraints: P = PT and P > 0
(actually, we reformulate (20), (21) in a slightly different
way which is more suitable for the case if m = 1, see the
journal version of the paper Mironchenko et al. (2019)).
Additionally, we impose an optimality condition

(K−C) · (K−C)T → min, (28)

where · is a scalar product of vectors.

The idea behind (28) is to minimize the non-diagonal
elements of the matrix M2, which helps to obtain good
approximations for the attraction region (we refer again
to the journal version for details).

This algorithm is implemented in Scilab. For the solution
of the matrix inequalities the LMITOOL package has been
used. The resulting matrices P,C,D are:

P =D · P̃ , P̃ =

(
0.3108695 −0.0054849
−0.0054849 0.000195

)
, (29a)

C =(−0.3053879, 0.0054754), D = 90.625. (29b)

In Figure 1 one can find an elliptic region of attraction
(22), subject to P,D given by (29) (in blue). Furthermore,
in the same figure some trajectories are depicted (in black),
which asymptotically converge to the origin, as shown



Fig. 1. Region of attraction (for the choice (27), (29)), computed via LMI technique (in blue), Trajectories of (18),
attracted to the origin, computed by direct solution of ODEs (in black), diverging trajectories (in red).

by direct simulation by solving the ODE (18), as well
as some diverging trajectories (in red). This provides an
approximation of the maximal region of attraction of (18).
One can see, that in one direction the ellipsoid obtained
by our method approximates very well the actual region
of attraction, but the results are not tight in the other
direction.

Remark 3. (Computational costs) For this problem
the elapsed time is (on a system with the specs: Intel(R)
Core(TM) i5-3317U 1.70GHz, 16 GB RAM, Windows 10)
• Finding P , C, D via LMIs: 0.018131 seconds
• Plotting the obtained region: 0.0129341 seconds
• Time for solving of the ODE (18) for 312 = 961 distinct
initial conditions on the time-interval [0, 60] on a grid
consisting of 600 points and for the plotting of the resulting
trajectories: 91.802833 seconds.

This shows the computational efficiency of our method. ◦

5. BOUNDARY CONTROL OF HEAT EQUATION
SUBJECT TO CONTROL SATURATIONS

Let us now start from a heat equation with a dynamical
boundary condition

yt = yxx + c(x)y, t > 0, x ∈ (0, L),
y(t, 0) = 0, y(t, L) = yd, t > 0,

(30)

where yd is the (scalar) output of the finite-dimensional
dynamical system

ẋd =Adxd +Bdsat(u(t)) (31a)

yd =Cdxd. (31b)

Here xd in IRnd is the finite-dimensional state whose
dynamics is subject to saturating control, Ad, Bd and Cd
are three matrices of appropriate dimension, and u(t) is
the scalar control for the PDE (30) and the ODE (31) that
is subject to a saturation map. Then, inspired by Prieur
and Trélat (2019), we introduce the following change of
variable:

w(t, x) = y(t, x)− x

L
yd(t), t > 0, x ∈ (0, L).

The PDE for w reads as:

wt(t, x) = yt(t, x)− x

L
ẏd(t)

=yxx(t, x) + c(x)y(t, x)− x

L
Cdẋd(t)

=wxx(t, x) + c(x)
(
w(t, x) +

x

L
yd(t)

)
− x

L
Cd
(
Adxd(t) +Bdsat(u(t))

)

=wxx(t, x) + c(x)
(
w(t, x) +

x

L
Cdxd(t)

)
− x

L
Cd
(
Adxd(t) +Bdsat(u(t))

)
=wxx(t, x) + c(x)w(t, x) +

(
c(x)

x

L
Cd −

x

L
CdAd︸ ︷︷ ︸

=:d(x)

)
xd(t)

+
(
− x
L
CdBd︸ ︷︷ ︸

=:b(x)

)
sat(u(t)). (32)

Please note that b is a scalar function, and d is a row
vector function with d(x) ∈ IR1×nd , x ∈ [0, L].

The boundary conditions for the variable w take the form:

w(t, 0) = w(t, L) = 0, t > 0. (33)

The heat equation (32), (33) has to be analyzed with the
ODE (31a).

Now, performing similar computations as done in Section
2 for the PDE (1) and, using the same notation for wj and
λj , we get

ẇj(t) = λjwj(t) + bjsat(u(t)) + djxd(t), j = 1, 2, . . . ,

where b and d are defined for x in [0, L] in (32) and bj =
〈b(·), ej(·)〉L2(0,L), dj = 〈d(·), ej(·)〉L2(0,L), for j = 1, 2, . . ..

Let us consider the first n (unstable) equations together
with the ODE (31) and rewrite this finite-dimensional
system as follows:

z′(t) = Az(t) + BKz(t) + Bφ(Kz(t))

= Az(t) + Bsat(Kz(t)), (34)

where K in IR1×(n+nd) is a row vector to be designed,

z(t) := (xTd (t), ω1(t), . . . , ωn(t))T , t > 0

B := (BTd , b1, . . . , bn)T ∈ IR(n+nd)×1,

the matrix A in IR(n+nd)×(n+nd) is given by

A:=
(
Ad 0
D Λ

)
, D:=

d11 d12 · · · d1nd

...
...

...
...

dn1 dn2 · · · dnnd

 , Λ:=

λ1 0

. . .

0 λn

 .

Applying Proposition 2 to system (34) instead of system
(18), we get sufficient conditions for K and for an es-
timation of attraction of (34). Now coming back to the
infinite-dimensional systems (32) and (30), and, applying
Proposition 1, we get sufficient conditions for K and for an
estimation of attraction of (30), as done in the following:



Corollary 1. Assume that there exist a symmetric posi-
tive definite matrix P ∈ R(n+nd)×(n+nd), a D ∈ R and a
matrix C ∈ R1×(n+nd) such that[

(A + BK)>P + P (A + BK) PB− (DC)>

(PB)> −DC −2D

]
< 0 (35)

and

[
P (K−C)>

K−C `2

]
> 0.

Then, with the controller u(t) = Kz(t), the system (34) is
locally asymptotically stable in 0 with a region of attraction
given by A := {z, z>Pz 6 1}. Moreover,

(i) (32) is locally exponentially stable with a region of
attraction ı(A)×X⊥n ,

(ii) (30) is locally exponentially stable.

6. CONCLUSION

A linear unstable reaction-diffusion equation has been
introduced in this paper. Both boundary control and in-
domain control cases have been considered. Local asymp-
totic stabilization problem by means of saturated con-
trol has been tackled. For this infinite-dimensional con-
trol problem, saturated feedback control laws have been
designed. Moreover the region of attraction has been es-
timated by an appropriate Lyapunov function and LMI
technique. The interest and the efficiency of our approach
have been illustrated by means of numerical simulations,
where it is shown that our approach yields a numerically
tractable design method.

Our results can be extended in a variety of different
directions. On the one hand, the anti-windup technique
Zaccarian and Teel (2011) can be used to improve the
performance of the closed-loop system. On the other
hand, using the methods of infinite-dimensional input-
to-state stability theory Mironchenko and Wirth (2018);
Dashkovskiy and Mironchenko (2013); Prieur and Mazenc
(2012); Tanwani et al. (2017), one can look for the analysis
robustness of the proposed saturated controllers. Some of
these extensions are discussed in details in the journal
version of this paper Mironchenko et al. (2019).
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