A mobility enhancement strategy for sub-14nm power-efficient FDSOI technologies
B. Desalvo
(1)
,
P. Morin
(2)
,
M. Pala
(3)
,
G. Ghibaudo
(3)
,
O. Rozeau
(1)
,
Q. Liu
(2)
,
A. Pofelski
(2)
,
S. Martini
(1)
,
M. Cassé
(1)
,
S. Pilorget
(2)
,
F. Allibert
(4)
,
F. Chafik
(2)
,
T. Poiroux
(1)
,
P. Scheer
(2)
,
G. Southwick
,
D. Chanemougame
(2)
,
L. Grenouillet
(1)
,
K. Cheng
(5)
,
F. Andrieu
(1)
,
S. Barraud
(1)
,
S. Maitrejean
(1)
,
E. Augendre
(1)
,
H. Kothari
(2)
,
N. Loubet
(2)
,
W. Kleemeier
(2)
,
M. Celik
(2)
,
O. Faynot
(1)
,
M. Vinet
(1)
,
R. Sampson
(2)
,
B. Doris
(5)
1
CEA-LETI -
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information
2 ST-CROLLES - STMicroelectronics [Crolles]
3 IMEP-LAHC - Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation
4 Silicon-on-Insulator Technologies (SOITEC)
5 IBM - IBM France
2 ST-CROLLES - STMicroelectronics [Crolles]
3 IMEP-LAHC - Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation
4 Silicon-on-Insulator Technologies (SOITEC)
5 IBM - IBM France
P. Morin
- Fonction : Auteur
- PersonId : 748494
- IdHAL : pierre-olivier-morin
- ORCID : 0000-0003-1878-1880
M. Pala
- Fonction : Auteur
- PersonId : 178951
- IdHAL : marco-pala
- ORCID : 0000-0001-5733-515X
- IdRef : 185867715
G. Ghibaudo
- Fonction : Auteur
- PersonId : 170596
- IdHAL : gerard-ghibaudo
- ORCID : 0000-0001-9901-0679
- IdRef : 069253099
M. Cassé
- Fonction : Auteur
- PersonId : 755505
- ORCID : 0000-0002-4934-2445
G. Southwick
- Fonction : Auteur
M. Vinet
- Fonction : Auteur
- PersonId : 756257
- ORCID : 0000-0001-6757-295X
Résumé
Continuous CMOS improvement has been achieved in recent years through strain engineering for mobility enhancement. Nevertheless, as transistor pitch is scaled down, conventional strain elements (as embedded stressors, stress liners) are loosing their effectiveness [1]. The use of strained materials for the channel to boost performance is thus essential. In this paper, we present an original multilevel evaluation methodology for stress engineering design in next-generation power-efficient devices. Fully-Depleted-Silicon-On-Insulator (FDSOI) is chosen as the ideal test vehicle, as it offers the advantage of sustaining significant stress within the channel without plastic relaxation (the thin channel staying below the critical thickness [2]). Starting from 3D mechanical simulations and piezoresistive coefficient data, an original, simple, physically-based model for holes/electrons mobility enhancement in strained devices is developed. The model is calibrated on physical measurements and electrical data of state-of-the-art devices. Non-Equilibrium Greens Function (NEGF) quantum simulations of holes/electrons stress-enhanced mobility give physical insights into mobility behavior at large stress (~3GPa). Finally, the new strained-enhanced mobility model is introduced in an industrial compact model [3] to project evaluation at the circuit level.