Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Force fluctuations on a wall in interaction with a granular lid-driven cavity flow

Abstract : The force fluctuations experienced by a boundary wall subjected to a lid-driven cavity flow are investigated by means of numerical simulations based on the discrete element method. The time-averaged dynamics inside the cavity volume and the resulting steady force on the wall are governed by the boundary macroscopic inertial number, the latter being derived from the shearing velocity and the confinement pressure imposed at the top. The force fluctuations are quantified through measuring both the autocorrelation of force time-series and the distributions of grain-wall forces, at distinct spatial scales from particle-scale to wall-scale. A key result is that the grain-wall force distributions are entirely driven by the boundary macroscopic inertial number, whatever the spatial scale considered. In particular, when the wall-scale is considered, the distributions are found to evolve from nearly exponential to nearly Gaussian distributions by decreasing the macroscopic inertial number. The transition from quasistatic to dense inertial flow is well identified through remarkable changes in the shapes of the distributions of grain-wall forces, accompagnied by a loss of system memory in terms of the mesoscale force transmitted toward the wall.
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-02046042
Contributeur : Frédéric Dufour <>
Soumis le : vendredi 22 février 2019 - 14:52:04
Dernière modification le : mercredi 7 octobre 2020 - 13:06:02
Archivage à long terme le : : jeudi 23 mai 2019 - 15:13:52

Fichier

Kneib2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François Kneib, Thierry Faug, Gilles Nicolet, Nicolas Eckert, Mohamed Naaïm, et al.. Force fluctuations on a wall in interaction with a granular lid-driven cavity flow. Physical Review E , American Physical Society (APS), 2017, 96 (4), ⟨10.1103/PhysRevE.96.042906⟩. ⟨hal-02046042⟩

Partager

Métriques

Consultations de la notice

379

Téléchargements de fichiers

762