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The force fluctuations experienced by a boundary wall subjected to a lid-driven cavity flow are
investigated by means of numerical simulations based on the discrete element method. The time-
averaged dynamics inside the cavity volume and the resulting steady force on the wall are governed
by the boundary macroscopic inertial number, the latter being derived from the shearing velocity
and the confinement pressure imposed at the top. The force fluctuations are quantified through
measuring both the autocorrelation of force time-series and the distributions of grain-wall forces,
at distinct spatial scales from particle-scale to wall-scale. A key result is that the grain-wall force
distributions are entirely driven by the boundary macroscopic inertial number, whatever the spa-
tial scale considered. In particular, when the wall-scale is considered, the distributions are found
to evolve from nearly exponential to nearly Gaussian distributions by decreasing the macroscopic
inertial number. The transition from quasistatic to dense inertial flow is well identified through
remarkable changes in the shapes of the distributions of grain-wall forces, accompagnied by a loss
of system memory in terms of the mesoscale force transmitted toward the wall.

I. INTRODUCTION

Granular materials are ubiquitous in nature and daily
life situations. Depending on the stress level applied,
dense packings of grains can exhibit solidlike or fluidlike
behaviour. The rheology of dense granular flows is a
key question among others in granular physics that has
attracted increasing attention in the last twenty years
[1–3]. The still unsolved questions, in particular related
to the transition between quasistatic and dense inertial
regimes, are relevant to a number of physical problems.
Two examples are the modeling of the processes at stake
when a full-scale granular flow—such as an avalanche or
a landslide—initiates in the release area or ceases in the
runout zone on the one hand, and the optimal design
of silos to guarantee an efficient transport of particles in
food processing or mining industry on the other hand.

Though outstanding progress was recently made re-
garding the rheology of dense granular flows, most of the
existing models were developed to predict the average
flow with only limited attention paid to the fluctuating
part (fluctuating trajectories of grains, velocity fluctua-
tions, stress fluctuations) of the flow [3]. In a similar
manner, many studies about the force experienced by
objects immersed in dense granular flows [4] focused on
the average force signal but only a few of them (see for in-
stance [5]) addressed the problem of the fluctuating part
of the force signal.
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There exists a large body of statistical studies which
are focused on spatial force variability, more particularly
on the analysis of the distributions of forces, in static
(unsheared) or slowly sheared granular media, thanks
to laboratory tests [6–11], numerical simulations [12–14]
and theory [15–21]. In contrast, there are only few studies
that have tackled the problem of temporal and/or spatio-
temporal fluctuations (the distinction between both be-
ing not so clear in a number of studies) in slow to
fast flows of granular materials [5, 14, 22–27]. A brief
overview of those studies is given in appendix A.

The present paper proposes to investigate in detail the
fluctuating part of the force experienced by a boundary
wall subjected to a granular flow. Our study is based on
an original system, namely the granular lid-driven cav-
ity, which is simulated by the discrete element method
(DEM). This follows a preliminary analysis of the time-
averaged dynamics of this granular cavity system that
was presented in [28]. The force fluctuations experienced
by the boundary wall are analysed with the help of a sys-
tematic characterization of the probability distributions
of grain-wall forces, under different confinement pressures
and shear velocities at the top of the cavity. Moreover,
various spatial scales are analysed including particle mi-
croscale, wall macroscale, and mesoscale (intermediate
between the two previous scales). The original system
considered in the present paper allows to investigate, for
the first time, how the distributions of grain-wall contact
forces evolve over a wide range of both shearing veloc-
ity and confinement pressure imparted to a complicated
dense granular-flow geometry, and considering different
spatial scales from a single grain to the entire boundary
wall.

The present paper is organized as follows. Following
our initial numerical study on the time-averaged dynam-
ics of the granular lid-driven cavity system [28], Sec. II
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FIG. 1. Geometry and boundary conditions for the lid-driven
cavity simulated by DEM. The granular sample is trapped
between four walls, the top one (the lid) applies the shear
displacement U and the confinement pressure P (see text for
details).

gives a summary of the macroscopic boundary conditions
and the microscopic parameters which we are using for
this new numerical study. Section III recalls briefly the
main results regarding the time-averaged dynamics and
enriches them with analysis of the horizontal position of
the vortex formed within the cavity, as well as of the lo-
cal rheology in the granular bulk. Section IV tackles the
temporal fluctuations of force by analysing in detail the
autocorrelation of the force time-series on both the entire
height of the wall and portions of the wall. Section V is
devoted to the analysis of the grain-wall force distribu-
tions at micro-scale (particle scale), macro-scale (entire
height of the wall) and meso-scale (portion of wall). Fi-
nally, the paper ends by discussing the main results and
some potential implications for basic aspects of granular
physics.

II. THE GRANULAR LID-DRIVEN CAVITY
SIMULATED BY DEM

A planar assembly of spheres is trapped into a box
made of four walls, as sketched in Fig. 1. The bottom
horizontal wall is fixed and rough, while both lateral walls
are fixed, smooth and spaced by a distance L = 5H. The
upper horizontal wall, namely the lid, is rough and has
an infinite length in order to allow for a uniform hori-
zontal displacement. This choice was initially motivated
by practical applications in geophysics which involve (i)
a rough bottom, (ii) moving grains that entrain static
grains (rough top wall), and (iii) obstacles with a smooth
surface (lateral smooth walls). The top wall produces a
constant shearing to the sample at velocity U through
the x−axis direction, and remains horizontal as it is not
allowed to rotate. A constant vertical confinement force
Fc is added continuously to the lid whose vertical position
is computed through the DEM algorithm. Although the
grains reaction to this force is not homogeneous along the
lid—but rather exhibits an exponential shape (see figure
4 of our preliminary study on this system [28]), an equiv-
alent macroscopic confinement pressure P can be defined

from the system dimensions: P = Fc/Ld, where d is the
particle diameter. As the grains are forced to stay inside
the cavity and the force profile is heterogeneous, a per-
petual circulation takes place within the whole volume of
the cavity, as further discussed in Sec. III of the present
paper.

The following dimensionless macroscopic parameters
are used to run the numerical simulations over a broad
range of confinement pressure P and shear velocity U ,
namely NP and NU :

NP =
P

ΦρpgH
, (1)

NU =
U√
gd
. (2)

The parameter NP is the ratio of the pressure P to
the typical hydrostatic pressure associated with height
H of a system under gravity. The gravity acceleration
g = 9.81 m s−2 is used for convenience in order to fa-
cilitate the parallel with any potential real laboratory
tests in the future, though the numerical system consid-
ered here is gravity-free. A constant macroscopic volume
fraction Φ = 0.6 is considered here, which corresponds
roughly to the random close packing of a three dimen-
sional assembly of spheres of width d. The particle den-
sity was taken equal to ρp = 2500kg m−3. Our numeri-
cal simulations use spherical particles whose centers are
forced to stay on a planar surface (plane (x, y) in Fig. 1).
Any volume fraction measured in two dimensions (2D) is
systematically transformed into an equivalent volume in
three dimensions (3D), assuming Φ3D = 2

3Φ2D if we com-
pare a sphere of diameter d included in a cube of identical
size d to a disk of diameter d included in a square of size
d. The parameter NU is the ratio of the shear velocity
U at the top to the typical velocity associated with one
particle of diameter d under gravity. Those choices are
also made for convenience to facilitate the parallel with
any potential real laboratory tests in the future.

The cavity is initially filled of grains under gravity de-
position in order to produce a dense granular packing of
height H. Once the system reaches the static equilib-
rium, the gravity is set to zero and the shearing starts
for a period of 10 seconds. As it will be defined in Sec. IV
(see Fig. 7), the data recording starts one second after the
shearing has started. One second typically corresponds
to the maximal time needed for the system to reach a per-
manent regime in terms of force measured on the sidewall
(see also more detail in [28]). In most of the simulations
presented in the present study, H/d was taken equal to
30 with H = 0.3m and d = 1mm. Some results from
numerical simulations with H = 0.3m but d = 0.3mm
will be discussed in conclusion.

Following the analysis proposed by [1] at the local grain

scale, if we consider the typical time tP = d
√
ρ/P associ-

ated with the top confinement pressure P and the typical
time tU = H/U equal to the inverse of the macroscopic
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shear rate, one can define the macroscopic inertial num-
ber IM :

IM =
tP
tU

=
d
√
ρ/P

H/U
, (3)

where ρ = Φρp holds for the density of the granular
sample within the cavity.

In the present study, NP varied from 0.01 to 100 and
NU from 1 to 20, which allows to investigate a wide range
of granular flow regimes defined by IM ranging typically
from 5 10−4 to 0.6. A very slight variation of Φ∗—the
volume fraction actually measured in our simulations—
with the boundary conditions in terms of U and P was
observed. This point will be discussed in Sec. VI. In
addition to IM , another dimensionless parameter that
controls the system is the length L of the cavity relative
to its height H. It has been shown in our preliminary
study of this granular lid-driven cavity system [28] that
the constraint L/H ≥ 5 should be respected to prevent
an effect of the cavity length on the steady force experi-
enced by the wall facing the shear displacement (namely
the right sidewall shown in Fig. 1).

All the results shown in the present paper were ob-
tained for L/H = 5, but their sensitivity to L/H was in-
vestigated by performing simulations with L/H = 7 and
L/H = 10. This sensitivity analysis revealed that—as
observed for the mean force, the force fluctuations re-
mainded not influenced by L/H as soon as L/H ≥ 5.

The contact laws for normal (viscoelastic) and tangen-
tial (elastic with a Coulomb threshold) forces between
particles and the corresponding micromechanical param-
eters (normal and tangential stiffnesses, damping coeffi-
cient accounting for inelasticity and related to restitution
coefficient, interparticle friction), used in our DEM nu-
merical simulations, are described in detail in appendix
B (see also [28]).

III. TIME-AVERAGED DYNAMICS

The overarching goal of the present paper is to study
in detail the force fluctuations experienced by the bound-
ary wall that faces the direction of the shearing velocity
at the top. In our previous study of this system [28], we
reported an analysis of the results regarding the time-
averaged dynamics. Before going into the details of force
fluctuations, this section proposes to recall some impor-
tant results reported in [28] and to further extend some
of the results concerning the time-averaged dynamics.

A. Steady vortex and mean force

The macroscopic inertial number IM , defined from the
boundary condition [see Eq.(3)], is the relevant parame-
ter to quantify the flow inertial state and to predict the
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FIG. 2. Time-averaged streamlines within the cavity for three
different values of IM . (a): IM = 1.2 10−3, NU = 1, NP = 25
; (b): IM = 6 10−2, NU = 10, NP = 1 ; (c): IM = 0.3,
NU = 10, NP = 0.04.

mean force experienced on the sidewall scaled by the
force imposed at the top, namely F/(PLd) (see figure
8 in [28]). More specifically, our previous study showed
that the mean force on the right sidewall is entirely con-
trolled by the changes in granular flow regimes, the lat-
ter regimes being governed by the macroscopic inertial
number. In the quasistatic regime at low IM , F/(PLd)
is constant. In the dense inertial regime at intermedi-
ate IM , F/(PLd) is a nearly-linear increasing function of
IM . In the rapid regime at higher IM values, F/(PLd)
starts saturating. The measurement of time-averaged lo-
cal granular flow velocity-fields revealed the formation of
one single vortex occupying the whole volume of the cav-
ity. This cavity-scale vortex is caused by the fact this
system forces the grains to move within the cavity vol-
ume, without any possibility to escape it.

Figure 2 shows examples of the streamlines inside the
cavity for low (IM = 1.2 10−3), intermediate (IM =
6 10−2) and high (IM = 0.3) values of IM . The
x−position of the vortex centre along the cavity was
extracted from the streamlines (as shown by the verti-
cal dotted lines in Fig. 2), thus allowing to deduce the
horizontal distance ` between the vortex center and the
right sidewall. The Fig. 3(a) shows ` scaled by the cavity
length L as a function of IM . In the quasistatic regime
(IM . 10−2), ` is relatively constant at an approximative
value of L/2, meaning that the vortex is centered. Be-
yond IM . 10−2, the symmetry of the velocity pattern is
lost, as depicted by `/L which starts decreasing sharply.
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FIG. 3. (a): Distance of the vortex center from the right
sidewall, `, relative to the cavity length L, as a function of
the macroscopic inertial number IM . (b): Mean force F on
the wall relative to the pressure force PLd imposed at the
top, as a function of IM .
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FIG. 4. F/(PLd) versus `/L. The grey dashed line is a
fit of Eq.(5) for IM > 10−2 (R2 = 0.96 is the regression
coefficient). This graph reveals that the mean force on the
wall is entirely controlled by the distance of the vortex from
the right sidewall.

The vortex centre is more and more shifted toward the
right sidewall when IM is increased, thus producing an
important horizontal asymmetry at the highest IM .

Figure 3(b) depicts how the mean force on the wall F
relative to the typical pressure force PLd imposed at the
top evolves with the macroscopic inertial number (see
[28] for more details). The variation of both F/(PLd)
and `/L with IM reveals the same transition from qua-
sistatic to dense inertial regime. While comparing the
two curves, a significant coupling can be detected, which
becomes obvious when plotting F/(PLd) as a function
of `/L in Fig. 4. F/(PLd) and `/L are linearly linked,
meaning that the mean force on the wall scaled by PLd

may be deduced from the vortex position, and vice-versa.
It is worth noting that the scattering at low F/(PLd) in
Fig. 4 is due to the very low velocity of the flow in this
region, making difficult the identification of the vortex
centre position.

In our previous study, we proposed an empirical scaling
for F as a function of IM in the following form [28]:

F = PLd

r1 + (r2 − r1)
1

1 +
I0M
IM

 , (4)

where r1, r2 and I0
M were constant fitting parameters.

For the data shown in Fig. 3, a good fit is obtained with
r1 = 0.53, r2 = 0.86 and I0

M = 0.02. The interparticle
friction does affect the values of r1, r2 and I0, as it will
be discussed in Sec. VI.

Considering that the mean force on the wall is con-
trolled by the distance of the vortex center from the wall
(` being a function of IM as displayed in Fig. 3(a)), we
can specify another scaling that is given by the following
relation:

F = PLd

(
c1 − c2

`(IM )

L

)
, (5)

where c1 and c2 are two constants that may depend
on the micromechanical parameters of the grains. In this
specific case c1 = 0.88 and c2 = 0.5, as shown by the
dashed line in Fig. 4.

The above analysis showing the link between the vor-
tex center position and the mean force on the right side-
wall (that faces the shearing direction at the top) further
extends the results reported in [28] concerning the mean
dynamics of the granular lid-driven cavity. For given mi-
cromechanical grain properties, all macroscopic physical
quantities measured in the cavity can be deduced from
the macroscopic inertial number defined on the imposed
shearing velocity and confinement pressure.

B. The local µ(I)−rheology

To further test the rheology, the local effective fric-
tion µloc and the local inertial number I were measured
within the whole volume of the cavity. Detailed steps
for the calculation of those local quantities are provided
in appendix C. Though the strain field is rather com-
plicated inside the cavity (see the streamlines in Fig. 2),
we observed that the strain and the stress tensors were
generally well aligned within most of the cavity volume.
Figure 5 shows an example for IM = 6.09 10−2. The
patterns were similar at higher IM . At lower IM , the
collinearity between stress and strain tensors was gen-
erally well verified, except close to the top and bottom
boundary walls for the lowest IM . This point will need
further investigation in a future work. Under the reason-
able assumption of collinearity between stress and strain
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(a)

(b)

FIG. 5. Spatial maps of the principal strain (a) and stress
(b) orientations averaged over time within the cavity volume:
example for IM = 6.09 10−2, NU = 10, NP = 1.

tensors, the local µ(I)−rheology, given by the relation
µth = µ1 + (µ2 − µ1)(1 + I/I0)−1 [29], was analysed.
It was found to be valid in most of the cavity volume
whatever IM . The values found for the parameters of
the µloc(I)−friction law were µ1 = 0.12, µ2 = 0.40 and
I0 = 0.13 (see much more details in appendix C C). The
difference between the µloc actually measured and µth
was calculated. Figure 6 displays the results in terms
of maps of (µloc − µth)/µth, for two distinct yet very
close values of IM ∼ 10−2 and IM ∼ 6 10−2. The latter
value corresponds to the first point shown in grey color
in Fig. 3 and the former value holds for the last point in
black color in Fig. 3.

At IM ∼ 10−2, a symmetrical bow-like pattern appears
across the entire length of the cavity (see (a)). Simi-
lar symmetrical bow-like patterns (not shown here) were
systematically obtained for IM below 10−2. Above the
bow-like pattern and below it (apart from the two re-
gions close to the two lateral walls), µloc − µth is nil,
which means that the spatial region is well governed by
the µ(I)−inertial rheology. For higher values of IM (see
Fig. 6(b)), the symmetry and the bow-like shape were
broken. In other words, the region inside the cavity where
µloc − µth was nil could extend over the whole height of
the cavity.

Note that a great number of values of µloc were found
to be lower than µ1 for IM below 10−2 (see Fig. 19
in appendix). This corresponds to the region in the
center of the cavity in Fig. 6(a), forming the bow-like
pattern across the entire length of the cavity, where
(µloc − µth)/µth is negative. These negative values of
µloc − µth suggest that the granular bulk in this region
is able to flow below the friction threshold µ1. Such a
situation was highlighted in a couple of granular systems
and explained by non-local effects [30, 31]. The condi-
tions to have this bow-like pattern over the entire length
of the cavity and its link to non-locality in dense granu-
lar flows (see [32] and references therein for an overview
of non-local models for granular flows) will need further
investigation in the future. However, it can be said that
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FIG. 6. Maps of (µloc − µth)/µth. (a): IM = 1.22 10−2,
NU = 10, NP = 25 ; (b): IM = 6.09 10−2, NU = 10, NP = 1.

such a symmetrical bow-like appears when the boundary
macroscopic inertial number is low, thus showing the lim-
its of the local µ(I)−rheology in the quasi-static regime.
In conclusion, the crossover from a bow-like pattern ex-
tending across the entire length of the cavity (at low IM )
to a smaller pattern in the confines of the boundary wall
(at large IM ) appears to show proof of the quasistatic to
dense inertial transition in the system studied here.

Moreover, one can note that triangular regions close to
the lateral walls are well-identified in Fig. 6. Note that
the collinearity between stress and strain tensors is well
verified inside those zones, also identified in Fig. 5. In
those regions, µloc − µth is positive, thus meaning that
local friction is higher than the value predicted by the lo-
cal µ(I)−rheology. This suggests that the µ(I)−rheology
is not a sufficient tool to estimate the magnitude of the
local force at the walls. However, we will show in the
rest of the paper that the macroscopic inertial number
is a good indicator for the transition from quasi-static
through dense inertial to collisional regimes in terms of
force fluctuations.

IV. FORCE DATA AUTOCORRELATIONS

A. Data recordings

While analysing temporal fluctuations, data acquisi-
tion frequency requires a particular attention: it has to be
large enough to be able to capture short-life force events,
and simultaneously small enough to avoid practical mem-
ory allocation issues while recording trends over large du-
rations. The DEM algorithm is not able to model oscillat-
ing phenomena that occur at frequencies higher than the
typical natural contact frequency fc which is the inverse
of the period of the damped oscillator corresponding to
a contact between two grains. In the present statistical
study the record frequency frec was set to 10 kHz. Using
the formulation described in [33] for the collision time as
a function of the grain properties gives a fc ranging from
4.8 kHz to 320 kHz. The frequency corresponding to the
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FIG. 7. Example of time-series of total force on the wall,
obtained for IM = 1.2 10−2, NU = 10, NP = 25. The instan-
taneous force F is highly fluctuating over time. The horizon-
tal dashed line depicts the value of the time-averaged force,
named F , reached in the steady-state regime (after a short
transient of about 1s). Inset: same data, zoomed in a time
window of 0.05 s.

DEM timestep was systematically set to 10fc, avoiding
any instability issues. The overlap between frec and the
lowest values of fc may cause the recording of unintended
effects caused by particle oscillations. It has been verified
that neither the autocorrelations nor the distributions of
the force time-series presented in the following statistical
study are sensitive to frec by comparing to simulations
with a doubled (20 kHz) and a halved (5 kHz) record
frequency.

B. Force time-series autocorrelation

The force time-series on the right sidewall of the cav-
ity show high temporal fluctuations, as displayed in
Fig. 7. This section aims at studying these fluctuations
by analysing the autocorrelation of force time-series. The
first information that will be extracted is the force peri-
odicity. The second information arising from force auto-
correlation is the critical autocorrelation time ∆tc, which
can be interpreted as the time after which the system
has forgotten a certain force value on the wall. In other
words, it reflects the typical time during which a future
state of the system keeps history of its past state regard-
ing the force transmitted to the wall.

We denote by C(F (t), F (t+∆t)) the temporal autocor-
relation function, where ∆t is the lag between two system
states. The critical autocorrelation time ∆tc is defined
with an arbitrary low autocorrelation threshold:

C (F (t), F (t+ ∆tc)) = 0.15. (6)

It is worthwhile to note that the above threshold value
does not influence the conclusions presented here as they

are qualitative, focused on main trends. Since the local
autocorrelation function C(F (t), F (t + ∆t)) is likely to
be a non monotonic function, it is expected to cross the
threshold many times. In this case, because we focus
on the initial autocorrelation decrease corresponding to
memory loss and we want to avoid any effect of the signal
noise, the lowest value of ∆tc is kept.

In the following, we present the autocorrelation of force
time-series at macroscopic scale, i.e. on the entire height
of the wall (Sec. IV B 1). Then the autocorrelation at
mesoscopic scale is studied by splitting the wall height
into ten portions of a few grains each (Sec. IV B 2).

1. Autocorrelation for the entire height of the wall

Figure 8 depicts the autocorrelation of the force signal
on the entire height of the right sidewall, for five values
of the macroscopic inertial number IM .

Because of the strong stress localisation taking place
at the top right corner of the cavity (see more detail
on this wedge effect in [28]), the shearing frequency at
the roughness (particle) scale is transmitted to the right
sidewall, as long as IM is not too high (typically smaller
than 10−2). Sinusoid-like oscillations are therefore ob-
served, with a decreasing period while increasing NU .
The inset of Fig. 8 shows a collapse of sinusoid-like oscilla-
tions when the autocorrelation function is plotted versus
(U/d)∆t, the wavelength associated with these oscilla-
tions being d (the diameter of the grains composing the
top wall roughness and shearing the sample).

For the highest IM , this effect is absent, which is in
agreement with a more inertial regime for which short-
time collisions occur in addition to enduring frictional
contacts able to transmit the shear force. The mean
free path of grains increases, which makes impossible any
continuous transmission of enduring contacts between
grains. Again, we detect the transition from the qua-
sistatic to the dense inertial granular regime occurring
around IM = 10−2, which is a value similar to the one
extracted from the time-averaged dynamics in Sec. III.

The general shapes of the autocorrelation functions
shown in Fig. 8 resemble a lot the ones found by Geng
and Behringer [5] in their experimental study of an in-
truder slowly dragged into a granular medium (see figure
8 in [5]). We generally observe that C(F (t), F (t + ∆t))
drops quickly (exponentially) to zero over a time scale
∆tc and then fluctuate around zero. These fluctuations
are well explained in our system by the typical frequency
U/d associated with the shearing velocity at the top and
the grain size (see discussion above). We were not able
to find a clear dependency of the critical time ∆tc on
either the macroscopic inertial number IM or any input
parameter such as the shear velocity of the lid, or the
confinement pressure at the top. In the following, we
focus on portions of the wall.
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FIG. 8. Evolution of C(F (t), F (t + ∆t)) over time for five
values of Im, where F (t) is the force time-series on the en-
tire right sidewall. Inset: C(F (t), F (t + ∆t)) plotted against
(U/d)∆t to highlight the oscillations wavelength.

2. Autocorrelation for portions of the wall

The force time-series on the right wall is the result
of the cumulative contact forces applied over the entire
height of the wall. Consequently, the strong spatial het-
erogeneity of the granular lid-driven cavity system may
require a more localized analysis by taking into account
the position at which individual forces are applied to the
wall. We propose here to investigate the autocorrelation
of force time-series on some portions of the wall. The
entire wall height is split into ten slices i ∈ {1...10} of
identical size. The index i = 1 refers to the bottom slice
and i = 10 refers to the top slice. Each slice has its as-
sociated force time-series from which the autocorrelation
Ci(F (t), F (t+ ∆t)) is then computed.

Figure 9 shows the autocorrelation of force time-series
for each of the ten identical wall portions, for three val-
ues of the macroscopic inertial number. The signal pe-
riodicity already discussed above is still observed at the
frequency U/d—associated with the roughness of the top
wall moving at velocity U . This is particularly clear in
the simulation at IM = 1.2 10−2 for which each tem-
poral autocorrelation curve shows this period, whatever
the vertical slice i considered along the wall. This in-
dicates that the periodic fluctuations at the top can be
transmitted to the lowest position at the bottom of the
cavity. This result is consistent with the fact that we
could identify a small, yet non-zero, spatial autocorrela-
tion at IM = 1.2 10−2 (not shown here). At the low-
est IM = 1.2 10−3, the periodicity caused by the top
roughness is present at the highest portion of the wall
(i = 10) but quickly fades while going deeper into the
sample along the wall, and even disappears for the low-
est position at the bottom of the cavity. In contrast to
the intermediate IM , the periodic fluctuations from the
top wall cannot be transmitted over the entire depth of

(a)

(b)

(c)

FIG. 9. Evolution of Ci(F (t), F (t+ ∆t)) over time measured
on 10 portions i of wall, for three values of IM . In each graph,
the horizontal dashed line shows the threshold of 0.15 that was
used to derive ∆tic. (a): IM = 1.2 10−3, NU = 1, NP = 25
; (b): IM = 6 10−2, NU = 10, NP = 1 ; (c): IM = 0.3,
NU = 10, NP = 0.04.



8

10-3 10-2 10-1 100

IM

0.0

0.1

0.2

0.3

0.4

∆
t c

∆t ic

<∆tc>

FIG. 10. Critical time ∆tic (cross symbols) beyond which the
force time-series becomes weakly correlated (C < 0.15)—for
ten portions i ∈ [1; 10] of the wall height, as a function of IM .
The full circles show <∆tc> that is the mean over the ten
∆tic values. The data were extracted from the autocorrelation
functions plotted on Fig. 9

the wall. This observation is in accordance with the fact
that at IM = 1.2 10−3 we did not find any spatial au-
tocorrelation (not shown here). There might exist some
zones near the cavity top inside which the grains have
enough time to rearrange locally, thus being able to relax
the high stress caused by jamming close to the wedge. At
higher IM , the periodic fluctuations associated with the
roughness of the top wall are lost whatever the vertical
position along the wall, thus further confirming the tran-
sition toward a much more inertial regime for which the
increase of the mean free path between grains prevents
the transmission of those fluctuations (see Sec. IV B 1).

Figure 10 shows the mean value of autocorrelation
time, <∆tc >, averaged over all portions of the wall.
Though there is some data scattering regarding ∆tic (see
grey-colored crosses on Fig. 10), this plot demonstrates
that there exists a IM below which <∆tc> is not zero
and beyond which <∆tc> vanishes. In other words, it
means that beyond a IM (' 10−2) it is not possible to
predict a future system state from the past one, thus indi-
cating that the memory of the system is completely lost.
This observation was still valid by increasing L/H from
5 to 10 (not shown here). The granular lid-driven cavity
system suggests here a remarkable transition from the
quasistatic to the dense inertial granular regime, which
is characterized by a total loss of system memory (not in-
trinsic to the material) in terms of the force transmission
from the top wall toward the right sidewall.

V. FORCE DISTRIBUTIONS

The distributions of force time-series on the sidewall
give crucial information on fluctuations, as they quantify
the probability of each force value the sidewall may expe-

rience. In this section, the analysis of force distributions
concerns three spatial scales: the micro-scale focused on
individual grain-wall contact forces, the macro-scale fo-
cused on the total force on the wall, and the meso-scale
focused on the force experienced by portions of wall. For
each scale, the distribution response to the same wide
range of IM as tackled in the previous sections is inves-
tigated. All distributions presented in this section were
obtained from quantities that were scaled by their time-
averaged value.

A. Force distributions at micro-scale

The distributions of contact forces measured in our
DEM simulations, for grains in contact with the right
sidewall, characterize the typical forces repartition ap-
plied locally on the wall (grain scale). Recorded contact
forces on the wall from all recording times are merged to
form the sample, and then the probability distribution is
computed. Let us note f an individual grain-wall con-
tact force and f the overall mean grain-wall contact force

of a simulation. In the following, f̃ = f/f is the scaled
grain-wall particle contact force.

Figure 11 shows examples of distributions of f̃ ob-
tained with three different values of IM but from several
distinct dipoles (NU , NP ). The remarkable result is that
the distributions collapse very well at each IM , revealing
that the repartition of particle contact forces on the wall
is entirely controlled by the macroscopic inertial number
of the granular lid-driven cavity.

Figure 12 shows the distributions of f̃ computed for
several IM . We have tested a number of well-established
PDFs to fit these curves, as well as theoretical or empiri-
cal PDFs discussed in the literature for granular contact
forces, specifically the ones proposed by [6] [Eq. (9)] and
[21] [Eq. (10)] (see appendix A). None of those PDFs
was able to give conclusive results over the whole range
of IM tested in our DEM simulations. The results were
conclusive, over the whole range of IM , with a truncated
log-normal distribution that reads as follows:

P(f̃) =
1

S
1

f̃σ
√

2π(f̃ + f̃0)
exp

(
− [ln(f̃ + f̃0)− f̃µ]2

2f̃σ
2

)
,

(7)

where f̃ > 0, f̃0 > 0, and S is the normalization factor

corresponding to the value at f̃0 of the survival function
of the (untruncated) log-normal PDF. The scale parame-

ter f̃µ, the shape parameter f̃σ and the location parame-

ter f̃0 are monotonic functions of the macroscopic inertial
number IM , as shown in Fig. 12(b).

In appendix D, we provide the data in a log-linear plot
(Fig. 20(a)) in order to highlight that the results are rea-
sonable overall but not perfect. In particular, the small
forces are quite well reproduced whatever IM but the
tails are not well captured at the highest values of IM .
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FIG. 11. Probability distributions of contact forces for grains
in contact with the wall. For each IM the curves are col-
lapsing whatever the dipole (U,P ), thus demonstrating that
the boundary macroscopic inertial number fully controls the
grain-wall contacts distributions.

Apart from the fact that the best fits were obtained
with the truncated log-normal distributions over the
whole range of IM tested, it remains challenging to pro-
vide physically-based arguments to justify the use of such
a PDF. A key result of the present study is that the pa-
rameters of Eq. (7) are found to be well-defined mono-
tonic functions of IM (see Fig. 12(b)). This opens a path
to predict the force distributions empirically, as long as
the boundary macroscopic inertial number is known. A
question then arises: does that key result too hold for
the distributions of the total force on the entire height of
the wall?

B. Force distribution at macro-scale

Figure 13 shows the distribution of F̃ , the total force
time-series exerted on the sidewall scaled by its mean F ,
for seven values of IM ranging from 1.2 10−3 to 0.6. At
the lowest IM in the quasistatic regime, the distribution
are nearly Gaussian whereas at the highest IM , the PDF
has a nearly exponential shape. This result is consistent
with the crossover from exponential to Gaussian PDFs
generally observed at high confinement pressures in some
past studies [34–36] (see also the brief review proposed
in appendix A).

At intermediate IM in the dense inertial regime, the
distribution has a more complex shape: at a first glance,
it may appear as a distribution which would combine
some properties of a Gaussian-like distribution and an
exponential-like distribution. However, it was impossible
to find a way to model the distributions of total force by
an analytical form that combines both Gaussian and ex-
ponential distributions, over the entire range of IM tested
here. The only PDF that could be fitted to the distri-
butions of the total force on the wall is again the trun-
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FIG. 12. (a): probability distributions of contact forces for
grains in contact with the wall, for different values of IM ;
the dashed lines show a fit by a truncated log-normal dis-
tribution (maximizing the likelihood with the Nelder-Mead
optimization method). (b): variation of the parameters of
the log-normal distributions as functions of IM (see Eq.(7)).

cated log-normal distribution [see Eq.(7)], as shown by
the dashed lines drawn in Fig. 13.

In the appendix D, we provide the same data in log-
linear plots (see Fig. 20(b)) to highlight the robustness
of the fits obtained with the truncated log-normal func-
tion over a wide range of the boundary inertial macro-

scopic number. As for the distributions of f̃ discussed
in Sec. V A, it would be difficult to give a physical in-
terpretation for the truncated log-normal PDF for the

distributions of F̃ . However, it is possible to analyse the
evolution of the corresponding parameters with the iner-

tial number. F̃µ, F̃σ and F̃0 (the scale, shape and local
parameters, respectively) are presented on Fig. 13(b), as
a function of IM . These parameters follow monotonous
paths with IM , allowing to predict the distribution of
the force on the sidewall from the inertial number. This
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FIG. 13. (a): PDF of the total force on the right sidewall for
eight values of IM ranging from 1.2 10−3 to 0.9. A truncated
log-normal distribution can be fitted on the data (dashed
lines). (b): the truncated log-normal parameters variation
as a function of IM .

result was further confirmed (with the same set of sim-
ulations as in Fig. 11) because several distinct dipoles
(NU , NP ) that give the same inertial number systemati-
cally led to the same distribution (curves not presented
here).

The Fig. 13(b) displays a jump in the parameters of the
truncated log-normal distribution between IM = 10−2

and IM = 6 10−2. Further looking at the curves
Fig. 13(a), this jump occurs when the nearly Gaussian
shape almost disappears due to the competition with the
exponential shape at low forces, thus displaying an ho-
mogeneous repartition (kind of plateau) from F/F = 0 to
F/F = 1. This significant change (for IM ∼ 10−2) of the
distribution of the total force on the wall, when the low
forces and the mean forces have almost the same proba-
bility of occurrence, appears to be an additional marker
of the quasistatic to dense inertial transition, concomi-
tant with the total loss of system memory discussed in

Sec. IV B 2.

C. Force distribution at meso-scale

Because of the heterogeneity of the granular sample
induced by the cavity boundary conditions, it is interest-
ing to investigate the force distributions at a mesoscopic
scale—smaller than the cavity height and greater than
the grain scale, as already done for the force autocor-
relation (see Sec. IV B 2). We note Fi the force time-
series on a portion of wall located at a given i, and Fi
its mean. The Fig. 14(a) displays the distributions of
Fi/Fi obtained on ten wall portions of identical size, for
IM ' 10−2. The distributions corresponding to the por-
tions located in the center of the right sidewall collapse
into one single curve, while the distributions measured
close to the top and bottom right corners of the cavity
differ from this master curve. This result reflects the spa-
tial heterogeneity of the cavity over its height, in connec-
tion to three zones: a highly sheared zone of small height
at the top, a small dead zone at the bottom and (in be-
tween) a flowing zone of much larger height in the center.
An identical behaviour (curves not shown here) was ob-
served for all values of IM . These three zones, extracted
from the distributions of Fi/Fi, are fully consistent with
the vertical profile of the time-averaged force measured
on the wall, as depicted in figure 5 of our previous study
[28]. The time-averaged force was rather homogeneous
over the same (large) central zone of the wall. It is worth
noting that the sizes of the bottom and top zones may be
sensitive to the grain diameter relative to the wall height.
Further simulations with different grain diameters would
be necessary to study the potential influence on the size
of the boundary (top and bottom) zones identified here.

In the following, the collapse of the Fi/Fi distributions,
excluding the extreme (top and bottom) zones of the wall,
is exploited to analyse how the distribution at meso-scale
evolves with the macroscopic inertial number. This meso-
scale corresponds to a size H/10 = 3d.

The Fig. 14(b) depicts the mean distribution over seven
values of i ∈ [3; 9] (corresponding to the central zone of
the cavity excluding the top and bottom highly inhomo-
geneous layers), for a wide range of IM . As observed
for the force distributions at micro- and macro-scale pre-
sented previously (see Sec. V A and V B, respectively),
the curves depict shapes that resemble a truncated log-
normal PDF. While comparing the distributions over the
wide range of IM , they appear however to be much closer
with each other, meaning they exhibit a weaker depen-
dency toward IM . It has been verified (curves not shown
here) that the distributions at macro-scale for the entire
wall did remain unchanged if the data near the bottom
and top wedges was not considered. The weaker depen-
dency of the distributions to IM at meso-scale is thus
striking, as it cannot be explained by a wedge effect only
(this effect would be detected on the macro-scale other-
wise). As a consequence, it can be concluded that similar
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FIG. 14. (a): PDF of force time-series on ten wall portions
i for IM = 1.2 10−2, NU = 10, NP = 25 (each portion time-
series is scaled by its corresponding time-averaged force). The
blue, orange and red curves respectively correspond to i ∈
[1; 2], i ∈ [3; 9] and i = 10. (b): mean distribution over i for
i ∈ [3; 9] (yellow curves of (a)) for seven values of IM .

meso-scale distributions can result in radically different
macro-scale distributions through the summation rela-
tion that links the forces on wall portions to the force
on the entire height of the wall. The latter observation
may put emphasis on the crucial role of spatial dependen-
cies between meso-scale force signals, that are controlled
by the granular flow regime (through the value of IM ).
In particular, the Gaussian-like shapes shown on Fig. 13
obtained for quasistatic regimes (IM ' 10−3) typically
reflect the summation of independent meso-scale force
signals. This is consistent with the fact that no spa-
tial correlation was found at the lowest IM (as detected
from the temporal autocorrelation functions at different
i shown on Fig. 9(a)). Conversely, the evolution toward
an exponential-like distribution at intermediate inertial
numbers (IM & 10−2) on Fig. 13 reveals a spatial depen-
dency between the meso-scale force signals. This is con-

sistent with the spatial correlation detected between the
temporal autocorrelation functions at different i shown
in Fig. 9(b).

At IM ' 10−3, the distribution displays a small
amount of low forces and a nearly Gaussian repartition
centered at about 0.7Fi. Then, with the increase of IM ,
all distributions quickly converge to an exponential-like
decrease with a high number of low forces. Finally, the
force distribution on wall portions become independent
of IM as soon as IM & 10−2 and i ∈ [3; 9]. This result
allows once again the identification of a clear signature of
the transition from quasistatic to dense inertial granular
flow regime for the cavity system studied here.

VI. DISCUSSION AND CONCLUSION

A. Time-averaged dynamics

Though there are still unresolved questions associated
with complicated behaviours close to the lateral walls
and with the formation of the bow-like patterns (prob-
ably caused by non-local effects), the analysis of the
time-averaged dynamics in section III highlighted the role
played by the µ(I)−rheology (proposed by [1, 29]) in the
granular force transmission toward a boundary wall. To
further confirm it, we have analysed the slight variation of
the height H of the cavity system. Up to now, a constant
volume fraction Φ = 0.6 close to random close packing in
three dimensions has been considered. The cavity system
defined in our study is by construction a volume-free sys-
tem, meaning that the volume fraction inside the cavity
may vary. Indeed, though the variation of volume frac-
tion of the granular bulk was small, one could measure it.
The Fig. 15(a) displays how the volume fraction Φ∗, actu-
ally measured in our DEM simulations and transformed
into an equivalent volume fraction in three dimensions
(see Sec. II), evolved with the boundary macroscopic in-
ertial number IM . We observe a plateau (constant Φ∗)
at the lowest IM , followed by a slow decrease of Φ∗ with
log(IM ). This slight dilatancy of the granular bulk while
increasing the inertial number is a robust result for a
number of volume-free granular systems governed by the
µ(I)−rheology, such as plane shear flows [37], free-surface
granular flows down inclines [2], annular shear cell flows
[38], etc. Finding this dynamic dilatancy law in the lid-
driven cavity system studied here further confirms the
role played by the µ(I)−rheology. However, it should be
kept in mind that the microrheology difference observed
in some spatial regions of the cavity shows that the local
µ(I)−rheology is not sufficient in particular close to the
bottom and top boundary walls where non collinearity
between strain and stress tensors was detected.

Note that the results in Fig. 15(a) are shown with two
values of both µ and d. A decrease of the interparticle
friction coefficient produced a slight increase of Φ∗ but
did not change the qualitative trend regarding the overall
evolution of Φ∗ with IM . The slight increase of Φ∗ with
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FIG. 15. Volume fraction Φ∗ (a) and scaled mean force on
the sidewall F/(PLd) (b) actually measured in the numerical
simulations, as a function of IM : d = 0.001 and µ = 0.5 (blue
curve), d = 0.0003 and µ = 0.5 (green curve), d = 0.001 and
µ = 0.27 (red curve). (a): we show the equivalent volume
fraction in three dimensions (3D) deduced from the volume
fraction in two dimensions extracted from DEM (2D): Φ3D =
2
3
Φ2D (see discussion in Sec. II). (b): the fits proposed in [28]

are drawn to show how µ affects the fitting parameters r1, r2
and I0M .

the decrease of the grain diameter d can be explained by
the boundary effects on the local volume fraction at both
lateral and smooth walls of the cavity. This geometrical
effect tends to decrease the volume fraction in the vicin-
ity of smooth walls as the grains are forced to line up. A
decrease in grain diameter fades the effect of the latter
phenomenon on the macroscopic volume fraction. The
Fig. 15(b) shows how the scaling between F/(PLd) and
IM , was influenced by the interparticle friction µ. The
values of r1, r2 and I0

M used for the fitting function given
by Eq. (4) are slightly changed when µ is divided by
nearly two (see detail in Fig. 15(b)). Finally, the particle
diameter d has a slight influence on the relation in the
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FIG. 16. PDFs of grain-wall forces at three different spatial
scales for two extreme values of IM .

quasistatic regime, namely when IM is below 10−2. The
influence of the grain properties (grain diameter, inter-
particle friction) will merit more attention in the future.

B. Grain-wall force distributions

Howell et al. [23] found exponential distributions at
the smallest volume fraction while the distributions ex-
hibited a peak at larger volume fraction (see appendix
A). Considering the one-to-one relation between IM and
Φ∗ shown in Fig. 15, the evolution of the distributions
with IM depicted in Figs. 12 and 13 are in qualitative
agreement with the evolution of the distributions with
the volume fraction reported by Howell et al. [23] in their
2D granular Couette experiments.

While varying IM and the spatial scale of interest,
the probability distributions of grain-wall forces which
we found in the present study (summarized in Fig. 16)
cover the wide range of shapes discussed in the litera-
ture overview proposed in appendix A. In their two-
dimensional granular Couette experiments, Howell et al.
[23] compared the distributions at the particle scale to
the ones averaged over a great number of particles, and
found that at large volume fraction the distributions be-
came nearly Gaussian. The latter observation appears to
be consistent with the evolution of the distributions for
IM = 1.2 10−3 (largest volume fraction in this numerical
study) when the spatial scale is increased, as shown in
Fig. 16.

A key result of the present study is that the value of the
boundary macroscopic inertial number and, to a lesser
extent, the spatial scale (macro, micro, or meso) consid-
ered, are key inputs that contribute to predetermine the
transition observed in the grain-wall force distributions.
Note that doubling L/H (not shown here) did not change
the distributions. All measured distributions could be
modeled by truncated log-normal PDFs whose parame-
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ters were fully controlled by IM . The fits were very good
at the wall-scale (see Fig. 20(b)) and reasonable at the
particle scale (Fig. 20(a)).

C. Quasistatic to dense inertial regime

The analysis of the granular lid-driven cavity problem
showed that the macroscopic inertial number IM fully
controlled all the time-averaged quantities (the mean
scaled force on the wall, the position of the vortex,
and the bulk volume fraction) and the force fluctua-
tions (through the analysis of probability distributions).
Moreover, a clear transition was observed at IM around
10−2 in the time-averaged dynamics of the cavity sys-
tem. This transition was identified by an increase of the
scaled steady force, a displacement of the vortex position
toward the wall, a loss of symmetry in the |µloc − µth|
maps, and a macroscopic dilation of the granular bulk.
The autocorrelation of force time-series at meso-scale al-
lowed to reveal a total loss of system memory (not in-
trinsic to the material) beyond a value of IM ∼ 10−2.
Finally, we identified drastic changes in the evolution of
the shape of probability distributions beyond a IM once
again close to 10−2. All these results are interpreted as
a salient signature of the transition from quasistatic to
dense inertial flow regime in granular media. However,
predicting the force fluctuations on the wall over a wide
range of IM remains a challenging question, as evidenced
by the complicated patterns formed close to the bound-
ary walls (Fig. 6).
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Appendix A FORCE DISTRIBUTIONS IN
GRANULAR MEDIA

The present appendix provides an overview of the liter-
ature about contact force distributions in granular media
for static (unsheared) or slowly sheared systems, as well
as for fast flow systems.

For static granular packings, the q−model was early
proposed and successful to reproduce the inhomogeneous
interparticle contact force distributions observed in the
pioneering experimental and numerical studies [15, 39].

In particular, the q−model is able to predict the remark-
able exponential decay at large forces generally measured
in static granular matter. The high probability (com-
pared to a Gaussian distribution) of having forces much
larger than the mean is generally associated with the abil-
ity of granular materials to develop long chainlike struc-
tures, the so-called granular force chains, that can sup-
port the large forces [13]. The probability density func-
tion (PDF) of interparticle contact forces f predicted by
the q−model in static granular media under gravity takes
the following form [15, 39]:

P(f/f) =
kk

(k − 1)!

(
f

f

)k−1

exp

(
−kf

f

)
, (8)

where f is the mean and k is the number of down-
ward neighbour particles considered (see much more de-
tails in [15, 16, 39]). Considering k = 2−3 generally gives
good results for the forces larger than the mean [12, 34].
However, thanks to technological progress in the field of
force sensors, a number of experimental studies identified
a range of complicated shapes of contact force distribu-
tions when approaching forces much below the mean (see
[12] for a detailed summary of those studies, before 2000,
about distributions at weak forces). In particular, the
presence of a plateau, followed by a slight increase at
the smallest forces, was identified under certain circum-
stances. In order to fit that more complicated shape of
contact force distributions, the empirical following func-
tional form was proposed in [6]:

P(f/f) = a

[
1− b exp

(
−f

2

f
2

)]
exp

(
−βf
f

)
, (9)

where a, b and β correspond to the PDF parameters
fitted on the experimental measurements made by [6]. A
slight modification of Eq. (9) was proposed by [8] to in-
terpret their experimental data on the effect of both pack-
ing order (disordered packings versus highly ordered—
crystalline—configurations) and interparticle friction on
P(f). Finally, it is worthwhile to note that log-normal
distributions were reported in some studies [40, 41].

As discussed in a recent review in [21] and a number of
references therein, the key features of the contact force
distributions in static or very slowly sheared granular
packings can be summarized as follow: i) the distribution
functions fall-off exponentially at large forces, ii) a small
peak, or plateau, is observed below the mean force, and
iii) the vanishingly small forces remain highly probable.
In his review about granular force transmission in static
granular packings, Radjai [21] proposed an elegant model
for contact force distributions and derived an analytical
expression for the density function able to predict the
three aforementioned features:

P(f) = β0(1 + γ0)
γ0 exp(β0f)

[1 + γ0 exp(β0f)]2
, (10)
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where β0 (homogeneous to a force) and γ0 (dimension-
less coefficient) are the PDF parameters. Under the nor-
malization f = 1, β0 and γ0 are linked by the relation
β0 = (1 + γ0) ln[(1 + γ0)/γ0)]. Though further studies
are needed to relate γ0 to actual physical properties of
the grains, varying γ0 allows to cover a wide range of
distributions with or without the presence of a peak [21].

Among the great number of experimental, numerical
and theoretical results concerning the shape of force dis-
tributions in static packings or slowly sheared granular
media, a key result is that the distribution at small forces
(plateau versus peak, maximum value, non-zero value at
vanishingly small force, etc.) is found to be very sensitive
to the granular sample preparation and shear history the
system experiences [12, 21]. While interpreting distribu-
tions of contact forces in static granular packings, Antony
[12] concluded that it is required to pay a due attention
to the shear strain level and any other quantities related
to shear history, such as the volume fraction. A theoreti-
cal study on static packings proposed by [19] predicted a
broadening of the distribution while increasing the shear
stress level, moving from distributions with a peak be-
low the mean value to exponential distributions. Two-
dimensional granular packings under anisotropic stresses
were studied theoretically by [20], showing that an in-
crease in the stress anisotropy produced a transition from
distributions with a peak below the mean to exponential
distributions.

A few studies observed the possibility of a crossover in
the shape of P(f) from exponential to Gaussian at large
confining pressure [34–36]. This change in the shape of
P(f) was attributed to very large deformations of par-
ticles [8]. The effect of particle stiffness on distribu-
tions of contact forces in static packings was investigated
by Erikson et al. [9]. They found that beyond a high
threshold—around 30% of deformation, the distributions
became sensitive to the particle stiffness. Decreasing the
particle stiffness led to an increase in the peak and of the
slope of the exponential decay at large forces, thus pro-
ducing a distribution likely to evolve toward a Gaussian
distribution. The increase of the peak by decreasing the
particle stiffness was also derived from the theory in [19]
(note that this theory predicts an increase of the non-zero
value at f = 0). In the limit of rigid grains (as addressed
in the present study), one can conclude that the distri-
butions are very weakly—not to say not—affected by the
particle stiffness.

The pioneering laboratory measurements of contact
forces distributions in granular media (see for instance [6–
8, 15, 36]) were confined to contact forces between a grain
packing and a boundary wall. It is worthwhile to note
that some studies paid attention to the cross-comparison
between the grain-grain (inside the bulk) contact force
distributions and the grain-wall contact force distribu-
tions. No significant difference was found for static pack-
ings [18, 19, 42], suggesting that the results for the distri-
butions at the boundary walls may generally be extended
to the grain-grain contact forces.

For slowly sheared granular packings, the effect of a
slight variation of the volume fraction on the shape of dis-
tributions was evidenced by the two-dimensional experi-
ments on a granular Couette geometry [23]. The authors
observed exponential distributions at the smallest vol-
ume fraction (around 0.78 in their 2D system), while the
distributions exhibited a peak at larger volume fraction
(around 0.81). Interestingly, Howell et al. [23] provided
a comparison between the distributions at the particle
scale to the distributions averaged over a great number
of particles (∼ 260 in their study). For the latter, they
found that at large volume fraction the distributions be-
came nearly Gaussian. The transition from exponential
distributions to narrower distributions with the presence
of a peak while increasing packing density was also re-
ported in a theoretical study based on the analogy with
supercooled liquids and foams [43].

A study on relatively fast granular flows (a silo dis-
charge) identified the effect of the velocity (flow rate at
the exit of the silo) on the shape of distributions [24]:
the authors observed a broadening of the distribution at
large velocities. A similar conclusion was drawn from
the experiments on objects dragged into a static granu-
lar medium in an annular cell by Geng and Behringer
[5], who observed broader distributions at large rota-
tion speeds of the annular cell. The theoretical study of
O’Hern et al. [43] based on the analogy with supercooled
liquids and foams predicted the broadening of distribu-
tions with the increase of the shear stress.

Appendix B MICROMECHANICAL
PARAMETERS FOR DEM

The grain-grain and the grain-wall interactions are
handled by a viscoelastic contact law for the normal force
and an elastic force with a Coulomb threshold for the
shear force. The normal contact force Fn and the shear
contact force Fs are expressed as:


Fn = max(0, knδn + cnδ̇n)n,

dFs = (ksδ̇sdt)s,

|Fs| ≤ µ|Fn|,
(11)

where n is the normal of the contact plane, s is the
unity vector along the shear direction (n · s = 0), kn
and ks are the normal and tangential contact stiffnesses,
δn is the normal penetration depth, δ̇s is the tangential
displacement increment, µ is the local friction coefficient,
cn is a damping factor that accounts for inelasticity of
particles and is related to the restitution coefficient of
particles, and dt is the timestep.

For a contact between two identical spheres of diameter
d, Young’s modulus E and Poisson’s ratio ν, the contact
stiffnesses can be computed as:
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kn =
1

2
Ed,

ks = νkn.
(12)

The contact law is governed by four physical parame-
ters: E, ν, cn and µ. It has been discussed in a number
of studies (see [28, 44] and references therein) that E can
be reduced to decrease the total time of calculation with-
out changing the numerical results, as long as we stay in
the limit of rigid grains. Such a limit of rigid grains is
verified if, for instance, we take N0 = E/(2P ) = 1.5 104,
where P holds for the macroscopic confinement pressure
and N0 is a dimensionless number. According to Eq.(12),
the grains stiffness was not kept constant but set with
respect to the macroscopic pressure applied P and the
above criterion. As a result, the values of kn typically
ranged between 6.6101N.m−1 and 6.6105N.m−1 over the
whole set of simulations. A sensitivity analysis to grain
stiffness was performed and revealed that—as long as
N0 ≥ 1.5 104, all the results presented in this paper
do not depend on this parameter. The Poisson ratio ν
was taken equal to 0.3. cn is set in the same manner
as in [28], with a restitution coefficient e = 0.5. Most
of the simulations were conducted with µ = 0.5 but we
will shortly discuss some results with µ = 0.27 in the
conclusion of the paper (see Sec. VI). In order to mini-
mize crystallization on the one side (low polydispersity)
and to prevent migration and segregation mechanisms
on the other side (high polydispersity), the grain diame-
ters are homogeneously chosen between d(1− ddisp) and
d(1 + ddisp) where ddisp = 0.15.

Appendix C FROM DISCRETE TO
CONTINUUM MODELING

A Kernel smoothing

As the granular sample is made of discrete particles in-
volving discontinuities, the construction of classical fields
often used in continuous mechanics require a particular
attention. In this paper, a spacial kernel smoothing is
used, as described in Fig. 17.

A 2D set of points mj spaced by d constitutes a regular
mesh over the whole cavity. The physical quantities are
computed at each mesh point from the particles quanti-
ties, according to the particle-point distance. Thus, any
(scalar or tensor) quantity Qi which is associated with
each individual sphere Si can also be associated with all
individual mesh points mj , forming a continuous field.
This quantity at the point mj , noted Qj , is the result of
a spacial kernel smoothing with a Gaussian kernel:

Qj =
1∑

i

N (Dij)
∑
i

QiN (Dij), (13)

where Dij are the distances between the spheres centers
and the mesh points, and N is the Gaussian function

FIG. 17. Illustration of the kernel smoothing used for regular
mesh fields calculations.

of mean 0 and standard deviation d/2. It is worth not-
ing that the use of a Gaussian kernel is arbitrary and
any classical kernel such as a simple rectangular function
should not modify the results. The choice of the stan-
dard deviation follows the result presented in [45]: the
coarse-graining width should be of the order of magni-
tude of the grains diameter to avoid any oscillation effect
and at the same time to limit sidewall effects.

B Local stress and strain rate tensors

The per-particle stress tensors and strain rate tensors
used in the current paper are computed thanks to the
algorithms that are part of the YADE-DEM open-source
code (see [46] and [47]). The space inside the cavity is dis-
cretized with the help of a Voronöı tesselation algorithm,
as shown by the dotted lines in Fig. 18. In this way,
it is possible to compute quantities based on an equiva-
lent continuum of the cavity space. Each sphere is then
associated with a list of neighbours forming a bounding
polyhedral contour Cε with their centroid positions, and
a bounding volume Vσ which does not overlap with the
neighbours.

Making the assumption that the spheres are at static
equilibrium, the following Love-Weber expression can be
applied to each sphere in order to compute their associ-
ated local stress tensors based on the contact forces:

σ =
1

Vσ

∑
cn

~fc ⊗~lc, (14)

where cn is the ensemble of contacts on the sphere, ~fc
are the contact forces and ~lc are the vectors linking the
sphere center to the contact points.

The local strain rate tensor D is defined as D = ε
∆t ,

where ε is the strain tensor computed from two system
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FIG. 18. Illustration of the tesselation for the per-particle
volume calculation.

states shifted by a short lag ∆t. For a particular sphere,
the displacements of all neighbours during ∆t are com-
puted. Then the average displacement gradient < ∇d~r >
is obtained from the integration of the displacement d~r
along Cε (see [47] for more details):

< ∇d~r >=
1

VD

∫
Cε

d~x⊗ ~nds, (15)

where VD is the volume associated with the contour Cε,
and d~r is linearly interpolated on the segment between
two successive neighbours. Finally, the strain tensor is
given by the symmetric part of < ∇d~r >.

C Inertial number and effective friction coefficient

The stress tensors σ and strain rate tensors D com-
puted according to Sec. C B enable the computation of
the spatial fields of inertial numbers I and effective fric-
tion coefficients µloc. The following formulations are the
same as described in [48] and are applied at each field
point m.

The norm ||A|| and the deviatoric component A′ of a
matrix A are defined as:

||A|| =
√

Tr(AAT )

2
, (16)

A′ = A− Tr(A)

3
I3, (17)

where I3 is the identity matrix of size 3. The inertial
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FIG. 19. Test of the local µ(I)−rheology for all simulations
of this study, including all IM . The points come from a region
of the cavity selected to approach the conditions of a simple
shear flow. This region corresponds to the upper half region
along y that is centered in a band of length L/2 along x.

number I and the effective friction coefficient µloc are:

I = d
√
ρp
||D′||
√
p
, (18)

µloc =
Tr(σ′D′)

3

1

p||D′||
. (19)

In the above relations, p denotes the pressure that is
defined from the decomposition of the Cauchy stress
into the isotropic pressure and the deviatoric stress:
σ = pI3 + σ′. Figure 19 displays µloc as a function of I
for each point m that belongs to a selected region of the
cavity not too close to the boundary walls (see its defini-
tion in the caption of Fig. 19) and for all simulations of
this study—over the whole range of IM tested. Finally,
the empirical following form proposed by [29] is used to
fit all the points, as drawn by the solid line on Fig. 19:

µth(I) = µ1 + (µ2 − µ1)
1

1 + I0/I
, (20)

where µ1 = 0.12, µ2 = 0.40 and I0 = 0.13. Note that a
great number of points falls below µ1 at low IM , suggest-
ing that non-locality [30] is present. This point will need
further investigation in the future.

Appendix D FORCE DISTRIBUTIONS:
LOG-LINEAR PLOTS

In this appendix, we provide the log-linear plots of
force distributions for the contact force at particle scale
(Fig. 20(a)) and the mean force on the wall (Fig. 20(b)),
which correspond to the data already shown in linear-
linear plots of Fig. 12(a) and 13, respectively.
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FIG. 20. Log-linear plots of the force distributions under dif-
ferent values of IM for the grain-wall contact forces at particle
scale (a) (see detail in caption of Fig. 12(a)) ; for the mean
force on the wall (b)(see detail in caption of Fig. 13(a)).
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[46] V. Šmilauer, A. Gladky, J. Kozicki, C. Mode-
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