A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2017

A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators

Résumé

Regularized Tyler Estimator's (RTE) have raised attention over the past years due to their attractive performance over a wide range of noise distributions and their natural robustness to outliers. Developing adaptive methods for the selection of the regularisation parameter α is currently an active topic of research. Indeed, the bias-performance compromise of RTEs highly depends on the considered application. Thus, finding a generic rule that is optimal for every criterion and/or data configurations is not straightforward. This issue is addressed in this paper for undersampled configurations (number of samples lower than the dimension of the data). The paper proposes a new regularisation parameter selection based on a subspace reduction approach. The performance of this method is investigated in terms of estimation accuracy and for adaptive detection purposes, both on simulation and real data.
Fichier principal
Vignette du fichier
reg_tyler - QH[2].pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01617054 , version 1 (16-10-2017)

Identifiants

Citer

Quentin Hoarau, Arnaud Breloy, Guillaume Ginolhac, Abdourrahmane Atto, Jean Marie Nicolas. A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators. ICASSP 2017, Sep 2017, New Orleans, United States. pp.3291 - 3295, ⟨10.1109/ICASSP.2017.7952765⟩. ⟨hal-01617054⟩
179 Consultations
250 Téléchargements

Altmetric

Partager

More