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ABSTRACT

Regularized Tyler Estimator’s (RTE) have raised attention
over the past years due to their attractive performance over a
wide range of noise distributions and their natural robustness
to outliers. Developing adaptive methods for the selection of
the regularisation parameter « is currently an active topic of
research. Indeed, the bias-performance compromise of RTEs
highly depends on the considered application. Thus, finding
a generic rule that is optimal for every criterion and/or data
configurations is not straightforward. This issue is addressed
in this paper for undersampled configurations (number of
samples lower than the dimension of the data). The paper
proposes a new regularisation parameter selection based on
a subspace reduction approach. The performance of this
method is investigated in terms of estimation accuracy and
for adaptive detection purposes, both on simulation and real
data.

Index Terms— regularised covariance matrix estimation,
robust estimation, adaptive detection, subspace.

1. INTRODUCTION

Covariance matrix estimation is a key step for many applica-
tions in signal processing. For example, in array processing,
the estimation accuracy of this parameter directly impacts the
performance of adaptive detectors. Given a set of K samples
{z},} € CY, the Sample Covariance Matrix (SCM) is the
most frequently used covariance matrix estimator. However,
it is known to be a poor covariance matrix estimator when
samples are drawn from heavy tailed distributions and/or cor-
rupted by outliers.

To overcome this issue, the M-Estimators (generalized
maximum likelihood estimators on the class of CES distri-
butions) have recently attracted considerable interest due to
their robustness properties [1]. Nevertheless, these estima-
tors are not suited to the now common problem of high di-
mensional data with low sample support. More specifically
M -estimators are not defined in undersampled configuration
(K < N) and the typical rule of thumb suggest that K > 2N
is required in order to reach good performance.
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This is why shrinkage (or regularisation) methods have
been recently proposed to deal with these issues [2, 3,4, 5, 6].
Currently, the regularised Tyler estimators (RTEs), which are
expressed as:

- N
RRTE(CV) = (1 — a)? + aly (1)

are especially receiving increasing interest [7, 8, 9, 10, 11,
12, 13]. These estimators correspond to regularised versions
of the robust Tyler estimator, where the shrinkage towards the
identity matrix ensures existence of the estimator in under-
sampled configuration (RTEs exist and are unique for o €
(maz(0,1 — K/N);1]), as well a good conditioning. More-
over estimators can be computed using the fixed point itera-
tions:

N K
ROHD — (1 — o) =
1-a)% ;
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that converge to the solution Rprr ().

With this new class of estimators, arises the highly non-
trivial issue of the selection of the regularisation parameter .
Indeed, the bias-performance compromise of RTEs highly de-
pends on the considered application, so one can not expect a
generic rule that is optimal for every criterion and/or data con-
figurations. From the recent state of the art, one can classify
several approaches:

e Oracle scheme associated to algorithm (2): [5] min-
imises the expected error for shape (scaling-free) es-
timation.

e Random Matrix Theory (RMT) regime (i.e. both K and
N tends to infinity at fixed rate K /N) estimators : [7]
minimises the MSE, [9] ensures optimal performance
of the ANMF detector, [8] minimises portfolio variance
(which similar to inverse SINR-Loss).

e Alternate variants of the algorithm (2) (e.g. trace nor-
malized iterations): [2] oracle estimator that minimises
the MSE, [14, 15] maximises the expected likelihood
ratio, [13] proposes a modified normalisation.



Regarding to this range of methods, we propose in this
paper to adapt oracle schemes of [2, 5] for undersampled con-
figurations (K < N) using a dimension reduction approach
[15]. Our motivations are are twofold:

e Oracle schemes have closed form expressions and are
not requiring an expansive grid search as in e.g. [9].
Hence they are more suitable to implementation.

e The current oracle schemes proposed in [2, 5] are not
well suited for severely undersampled configurations,
as it will be explained and illustrated in the simulation
section of this paper.

As a by product, we also re-derive oracle estimators of [2]
for the algorithm (2), both for the real and complex cases.
The performance of this method is investigated in terms of
estimation accuracy and for adaptive detection purposes, both
on simulation and real data.

2. CONTEXT

2.1. Regularised Tyler Estimator

Let {:ck}l x € CN aset of K N-variate CES distributed
random vectors ¢, ~ CEN(0, R, g), of mean 0 € {0}V,
scatter matrix R € CV*¥ and generator g. In many applica-
tions, the true value of R is unknown, and estimators are used
to retrieve it from the sample set. The maximum likelihood
estimator minimises the negative log-likelihood:

sz

with p(t) = —In g(t). This MLE can be generalised to obtain
M-Estimators of the scatter matrix by choosing more general

HR=1z,) —In |[R7Y, 3)

p functions. In the particular case where p(t) = N In ¢, (3)
leads to the Tyler Estimator [16]:
K
~ N xpxd
Rrp=— Tk “)
K kzzl x}! Rypr

When the sample support K is not sufficient (K < 2N),
the matrix RT g is ill-conditioned, and for K < N it does not
exist. In order to solve this issue, the estimator is regularised,
an operation also known as “shrinkage towards identity.” A
first algorithm for the regularised Tyler estimator (RTE) has
been proposed in [17]

K

i N x
Reywn=(0-a)z Y ——mtr—+aly,
k=1 T RCWH k (5)
R(H‘l)
R(Cgﬂv-vl) - N CWH
+1
Tr(REYY)

These fixed point iterations converge for any o € (0;1) as
proven in [2], however this is a heuristic solution as it does not

follows from the minimisation of an objective function. The
RTE have been proposed as minimiser of a penalised negative
log-likelihood in [4, 5, 6]

AR 'zy)—In |[R7'|+aP(R), (6)
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with P(R) = Tr(R™!). This yields the unique solution in
(1) that can be computed using the iterations (2), which con-
verges for a € (maz(0,1 — £);1]. We will focus on this
algorithm for the rest of the paper.

2.2. Oracle shrinkage parameter selection

Depending on the application, the parameter o must be cho-
sen wisely. [2] proposed an oracle by minimising the MSE:

acwn = argmax E[|R — 1:1||2] , @)
(o7

Proposition 2.1 Let €, = ((N + 1)(K + 1) — 4) Tr(R?)
and ¢, = (KN + K — 1) Tr(R?). Fori.i.d CES distributed
samples, the solution to (7) when using algorithm (2) is, in
the real case:

QCWH =
(N —2)Tr(R?) + N T*(R) ®
¢, + NT*(R) — 2K (N +2)Tr(R) + KN(N +2)’
and in the complex case:
QCWH =
NT*(R) — Tr(R?
(R) - TH(R?) o

¢, + NT*(R) —2K(N +1)Tr(R) + KN(N +1)
Proof: See [2], with minor adaptation for the complex case
and, since we work with algorithm (2), the normalisation
Tr(R) = N cannot be applied.

Another criterion was proposed in [5] in order to obtain
an oracle for «, this time focusing on fitting the shape of the
matrix rather than its values:

Tr(R'R)

I 2
=L N

aory = argmax E[|R'R — (10)

Proposition 2.2 For i.i.d CES distributed samples, the solu-
tion to (10) when using algorithm (2) is, in the real case:

N -2+ NTr(R)

aoTy = 1D
! N—2+NTr(R)+K(N+2)(Tr<L2) 1)
and in the complex case:
NTr(R) -1
aoTy = (B) . (12)

NTH(R)— 1+ K(N +1) (%‘2)—1)



Note that these « are oracles as they require the values
of Tr(R) and Tr(R?). The true covariance matrix value
being unknown, one can replace it by a RTE as proposed
in [5]. In the case were K ~ N, this estimator seems, in
practice, accurate enough. However, when K < N the es-
timation of the traces becomes greatly inaccurate, enforcing
&ory = 1 and impeding the regularisation process or caus-
ing Gowpg < 1— % and the divergence of the recursive al-
gorithm. Aiming to solve those issues, we propose a new
scheme for the estimation of covariance matrices in the un-
dersampled configuration, inspired by the work of [15].

3. SUBSPACE APPROACH

The estimation procedure we propose applies by (i) project-
ing the samples onto the K-subspace they span, (i) estimat-
ing covariance matrix onto this subspace using a RTE and
(#4i) expanding this result to a N x N estimator.

3.1. Dimension reduction

The first step is to retrieve the subspace spanned by the sample
vectors {xy } by performing the SVD of the SCM:

Rsoy =UDUY, (13)

with D a diagonal matrix and U = [, ... 4y]. In the case
K < N, only K eigenvalues are non zero and their corre-
sponding eigenvectors Uy = [ty ... Gg] (first K columns
of U) span the subspace where the data lies in. Also denote
U % =[x 11 ... 0x]. Using this basis, the true covariance
matrix R is decomposed in blocks as:

R= [UK Uﬂ [ Rk O ] [UK ffﬂ T e
As argued in [15] inference about the covariance matrix is
possible only in the K -dimensional subspace spanned by the
data. Hence one can only estimate Ry, which can be done
using the projections of the vectors xj, onto this subspace:

& =Ull ay,. (15)

3.2. RTE in the K-subspace

Using the K-dimensional samples &, we have shifted the
problem from the case N > K to N = K, where we can ex-
pect to have an accurate estimation of Tr(Rg) to be plugged
in the «v oracles as well as to be rid of the condition on a for
the convergence of the RTE, thus being compatible with all
oracles presented in section 2. The RTE of the projections is:

A~ K H
RKZ(l—a)Zi

+algk. (16)

In the following, the estimated « value (oracle) is denoted & .
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Fig. 1: (a) Alpha values when K /N varies. Thick gray line represents the
limit. (b) Distance D when K /N varies. Parameters are N = 153, p = 0.9,
v = 0.5, results are averaged over 1000 Monte-Carlo trials.

Original image

o
Amplitude (Arbitrary unit)

05 1 15 2 25 3 35
Crossrange -y (m)

Fig. 2: Original GPR image. Objects locations are indicated by red squares.

3.3. Dimension expansion

After the computation of R (éy), the last step of the method
is to shift back to the N-space and reconstruct the covariance
matrix estimator R. As samples are lacking to estimate the
component Rﬁ, we propose to replace it by a non informative
solution a+In_ . In this work, we propose to set at = a4
to preserve the the spectrum of the estimated matrix, since
the lowest eigenvalue of Ry is greater than &p. R is thus
expressed as:

5 [ ][ Ri(éo) 0
R= {UKUK][ 0  GolIn_x

][UK U[HH. (17)

Note that other a* values can be used in order to influence
the properties of the estimator, e.g. regulate the PFA levels
when used in an adaptive detection problem [18].

4. NUMERICAL SIMULATIONS

In this section we run simulations to illustrate the interest of
the proposed subspace approach compared to the RTE with
oracles from section 2 in the undersampled case. To line up
with the real data application of section 5, the simulations are
run in the real case, and set up with {ay }1 x generated fol-
lowing a SIRV model, z), = /7%, gk, With g, ~ RAx (0, R),
R of Toeplitz form [R];; = p/"~7l, and 7 ~ (1, 1/v).



Fig. 1a shows the value of & for both criteria in the under-
sampled case with and without subspace projection. The first
remark is that the values for the CWH oracle in both cases are
close to one another and under the convergence limit. This
shows that though the subspace projection does not influence
the value of &y, it now allows it to be used in algorithm (2).
For the shape criterion, there is a gain in the estimated value,
showing that the subspace projection allows to put less weight
on the identity and make more use of the data vectors.

Fig. 1b shows the difference between estimated matrices
in terms of the average distance D(R, 1?) [1]:

D(R,R) = |[N/Ti(RT'R)R'R~Ix|*. (18
Results shows a gain in using the subspace approach for low
K /N ratios, with a decrease in performance when K — N
where the subspace approach meets back with the traditional
estimation. A similar study can not be made for the CWH
oracle since the &cw g values does not allow convergence
when the subspace operation is not applied.

5. APPLICATION TO REAL DATA

In this section we apply the proposed adaptive detection
methodology to GPR images [19]. The problem consists in
detecting a known signal p € RY (response of a buried ob-
ject) in an observation € R, while having a secondary set
of response free observations {xy}, , with K’ < N. Two
hypotheses are formulated Hy: * =nand Hi: x = ap+n
and the problem boils down to the following detector:

. TR-1g2 i
A= max P E2] <0, a9
¢eR* (p T R- p)(:l:TR L) H1

which is then applied to an image containing two objects (in-
dicated by red squares) shown in fig. 2. Three estimators have
been used: RTE with &or, with and without subspace pro-
jection, RTE with &cywy g with subspace operation. We use as
a fourth estimator the RTE with the parameter & pp maximis-
ing the probability of detection through use of RMT [9].

Results on fig. 3 show an improvement in detection for
the shape criterion, lowering the noise response level in the
lower part of the image. The estimator using values from
&aowp returns a further reduced noise response. It also
yields a result similar to the maximum PD parameter &pp
while being much faster to compute. To further compare the
methods, a threshold at 20% of the maximum of each image
is applied to compute the corresponding PFA levels. Re-
sults are PF Aoy = 1.151072, PFAorysuw = 2.11073,
PFACWH =14 1073, PFApp =1.2 103

6. CONCLUSION

A new scheme for covariance matrix estimation in the under-
sampled case (K < N) have been proposed, relying on a
K-subspace projection approach to estimate the core of the
matrix, and a reconstruction of the full matrix in the original
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Fig. 3: Results for (a) aopry Wwithout subspace operation (range o €
[0.998; 1]) (b) o7y With subspace operation (range o € [0.8;0.95]), (c)
acw g Wwith subspace operation (range o € [0.1;0.4]), and (d) maximum
PD &pp value (range o € [0.4;0.9]). Parameters are N = 153, K = 40

N-space. The approach negates the convergence issues inher-
ent to RTE this configuration and allows for a better estima-
tion of the shrinkage parameter & as illustrated by numerical
simulations. Application to the adaptive detection problem
have shown promising results.
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