Beveled-Tip Needle-Steering Using 3D Ultrasound, Mechanical-Based Kalman Filter and Curvilinear ROI Prediction - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2017

Beveled-Tip Needle-Steering Using 3D Ultrasound, Mechanical-Based Kalman Filter and Curvilinear ROI Prediction

Résumé

This paper introduces a new robust 3D ultrasound needle detection approach integrated in a 3D needle steering system associated to a real-time path planning. The robustness of an existing algorithm is improved by limiting the needle detection to a curvilinear region of interest (ROI) using a novel mechanical-based prediction model. This linear model is also used in a Kalman filter to reduce detection noise and reject false detections. These two improvements drastically increase quality of our feedback. Finally, the 3D needle steering system is able to reach a target in phantoms with a maximal error of 0.8 mm without obstacle and 1.6 mm with obstacle.
Fichier principal
Vignette du fichier
ICARCV2016.pdf (1.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01455325 , version 1 (03-02-2017)

Identifiants

Citer

Paul Mignon, Philippe Poignet, Jocelyne Troccaz. Beveled-Tip Needle-Steering Using 3D Ultrasound, Mechanical-Based Kalman Filter and Curvilinear ROI Prediction. ICCARV: International Conference on Control, Automation, Robotics and Vision, Nov 2016, Phuket, Thailand. ⟨10.1109/ICARCV.2016.7838840⟩. ⟨hal-01455325⟩
1922 Consultations
592 Téléchargements

Altmetric

Partager

More