Hochschild and cyclic (co)homology of the Fomin–Kirillov algebra on $3$ generators - Université Grenoble Alpes
Article Dans Une Revue Journal of Noncommutative Geometry Année : 2023

Hochschild and cyclic (co)homology of the Fomin–Kirillov algebra on $3$ generators

Estanislao Herscovich
Ziling Li
  • Fonction : Auteur

Résumé

The goal of this article is to explicitly compute the Hochschild (co)homology of the Fomin–Kirillov algebra on three generators over a field of characteristic different from 2 and 3 . We also obtain the cyclic (co)homology of the Fomin–Kirillov algebra in case the characteristic of the field is zero. Moreover, we compute the algebra structure of the Hochschild cohomology.

Dates et versions

hal-04776903 , version 1 (12-11-2024)

Identifiants

Citer

Estanislao Herscovich, Ziling Li. Hochschild and cyclic (co)homology of the Fomin–Kirillov algebra on $3$ generators. Journal of Noncommutative Geometry, 2023, 18 (1), pp.143-230. ⟨10.4171/jncg/525⟩. ⟨hal-04776903⟩
6 Consultations
0 Téléchargements

Altmetric

Partager

More