Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon - Université Grenoble Alpes
Article Dans Une Revue Light: Science and Applications Année : 2023

Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon

Jingwen Ma
  • Fonction : Auteur
Taojie Zhou
Mingchu Tang
Haochuan Li
  • Fonction : Auteur
Zhan Zhang
  • Fonction : Auteur
Xiang Xi
Huiyun Liu
Zhaoyu Zhang
Siming Chen
  • Fonction : Auteur
Xiankai Sun

Résumé

Abstract Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for robust lasers. Here, we experimentally realize the topological Dirac-vortex microcavity lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave linearly polarized vertical laser emission at a telecom wavelength. We confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.

Dates et versions

hal-04625971 , version 1 (26-06-2024)

Identifiants

Citer

Jingwen Ma, Taojie Zhou, Mingchu Tang, Haochuan Li, Zhan Zhang, et al.. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon. Light: Science and Applications, 2023, 12 (1), pp.255. ⟨10.1038/s41377-023-01290-4⟩. ⟨hal-04625971⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

More