Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization - Université Grenoble Alpes Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2024

Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization

Résumé

This paper proposes an algorithm to calculate the maximal probability of unsafety with respect to trajectories of a stochastic process and a hazard set. The unsafe probability estimation problem is cast as a primal-dual pair of infinite-dimensional linear programs in occupation measures and continuous functions. This convex relaxation is nonconservative (to the true probability of unsafety) under compactness and regularity conditions in dynamics. The continuous-function linear program is linked to existing probability-certifying barrier certificates of safety. Risk contours for initial conditions of the stochastic process may be generated by suitably modifying the objective of the continuous-function program, forming an interpretable and visual representation of stochastic safety for test initial conditions. All infinite-dimensional linear programs are truncated to finite dimension by the Moment-Sum-of-Squares hierarchy of semidefinite programs. Unsafe-probability estimation and risk contours are generated for example stochastic processes.
Fichier principal
Vignette du fichier
2401.00815.pdf (996.26 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04382156 , version 1 (09-01-2024)

Identifiants

  • HAL Id : hal-04382156 , version 1

Citer

Jared Miller, Matteo Tacchi, Didier Henrion, Mario Sznaier. Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization. 2023. ⟨hal-04382156⟩
36 Consultations
7 Téléchargements

Partager

Gmail Facebook X LinkedIn More