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Unsafe Probabilities and Risk Contours for Stochastic

Processes using Convex Optimization

Jared Miller1, Matteo Tacchi2, Didier Henrion3, Mario Sznaier4

January 2, 2024

Abstract

This paper proposes an algorithm to calculate the maximal probability of unsafety with respect to
trajectories of a stochastic process and a hazard set. The unsafe probability estimation problem is cast as
a primal-dual pair of infinite-dimensional linear programs in occupation measures and continuous func-
tions. This convex relaxation is nonconservative (to the true probability of unsafety) under compactness
and regularity conditions in dynamics. The continuous-function linear program is linked to existing
probability-certifying barrier certificates of safety. Risk contours for initial conditions of the stochas-
tic process may be generated by suitably modifying the objective of the continuous-function program,
forming an interpretable and visual representation of stochastic safety for test initial conditions. All
infinite-dimensional linear programs are truncated to finite dimension by the Moment-Sum-of-Squares
hierarchy of semidefinite programs. Unsafe-probability estimation and risk contours are generated for
example stochastic processes.

1 Introduction

This work performs risk analysis of stochastic processes by computing the probability that trajectories will
reach an unsafe set Xu. Trajectories evolve over a maximal time horizon of T in a state space X ⊆ Rn,
beginning in an initial set X0 ⊆ X and possibly entering the unsafe set Xu ⊆ X. We consider stochastic
processes described by a generator L (e.g., a Stochastic Differential Equation (SDE)), for which Xt is the
time-dependent state probability distribution of the process starting from X0 and terminating upon exit
from X (with exit time distribution τX = inf{t : Xt ∈ ∂X}). The worst-case probability of unsafety for
L-trajectories starting at a point x0 ∈ X within a time horizon of [t0, T ] is:

P ∗(t0, x0) = sup
t∗∈[t0,T ]

ProbXt∗ [x ∈ Xu] (1a)

x(t) follows L ∀t ∈ [t0,min(t∗, τX)] (1b)

x(0) = x0. (1c)
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The stopping time min(t∗, τX) in (1b) also ensures that trajectories x(t) remain in X for all relevant t. The
worst-case probability of unsafety for L-trajectories over an initial set X0 ⊆ X is:

P ∗(t0, X0) = sup
x0∈X0

P ∗(t0, x0) (2a)

= sup
t∗∈[0,T ], x0∈X0

ProbXt∗ [x ∈ Xu] (2b)

x(t) follows L ∀t ∈ [t0,min(t∗, τX)] (2c)

x(0) = x0. (2d)

The initial set of X0 is safe if P ∗(t0, X0) = 0 and is unsafe if P ∗(t0, X0) = 1. Any other value P ∗(t0, X0) ∈
(0, 1) returns a maximal probability of unsafety of the SDE.

The map (t0, x0) 7→ P ∗(t0, x0) can be interpreted as a risk function in trajectory planning, in which
level-sets of P ∗ are risk contours with constant unsafe probability. This paper will also develop a piecewise-
polynomial sequence of risk functions that will converge from above in an L1 sense to the optimal map P ∗.
Superlevel sets of any one of these risk-function-proxies can be used to identify unsafe regions.

Safety verification of stochastic systems includes the tasks of stochastic reachability [1], reach-avoid
analysis [2, 3], ruin [4], and performance checking [5].

Infinite-dimensional convex Linear Program (LP) formulations of generically nonconvex and nonlinear
stochastic trajectory problems can be used to analyze and control system executions, with no conservatism
added under appropriate compactness and regularity conditions. The infinite-dimensional LP must be trun-
cated into finite-dimensional programs in order to obtain numerical solutions. Algorithms to perform this
truncation for generic stochastic processes include gridding [6, 7], radial basis function selection [8], and
random sampling [9].

Barrier functions [10] provide a level-set certificates of invariance with probability (1−ϵ). Control barrier
functions [11–13] may also be generated to form controllers with stochastic guarantees of safety.

In the specific case where the stochastic process and all problem data have a rational representation,
the moment-Sum of Squares (SOS) hierarchy [14] can be employed to truncate the LP into a hierarchy of
Semidefinite Programs (SDPs) in increasing size, parameterized by the polynomial degree. Application of
the moment-SOS hierarchy for stochastic analysis and control includes regional verification [15], reach-avoid
estimation [16], reach-avoid control [17], region of attraction estimation [18], chance-constrained trajectory
planning via moment propagation [19], exit-time estimation [20], and (conditional) value-at-risk upper-
bounding [5].

This paper continues a research direction involving safety quantification of nonlinear systems. The safety
of a set X0 in (2) is quantified by its worst-case probability of unsafety. Other such quantities include the
expected time a trajectory spends in the unsafe set [21], constraint violations representing an expanded
unsafe set [22], the distance of closest approach [23], value-at-risk of state functions [5], and the perturbation
intensity necessary to crash [24].

The two most relevant prior works to our paper are [25] and [26]. The work in [25] presents infinite-
dimensional LPs to generate superlevel-based outer approximations of probability-p-safe sets of an SDE for
a fixed initial distribution. Over the course of their derivations, they present a nonconservative formulation
in Lemma 2 that is similar to our approach. Our problem evaluates safety of a specific initial set X0 with
respect to a free initial distribution, performs risk contour analysis, and extends the framework towards
more general stochastic processes. The work in [26] synthesizes risk contours for optimization problems with
distributional uncertainty (with an emphasis on obstacles and path planning), and our paper extends this
work by analyzing safety of stochastic dynamical systems.

This paper has the following structure: Section 2 introduces preliminaries such as notation, stochastic
processes, and SOS proofs of nonnegativity. Section 3 poses infinite-dimensional convex LPs to compute the
worst-case probability of unsafety of a stochastic process w.r.t. an initial set X0. Section 4 modifies the
worst-case unsafety LPs to create risk contours that upper bound the true risk map P ∗(t0, x0). Section 5
truncates the unsafety LPs into a converging sequence of finite-dimensional SDPs using the moment-SOS
hierarchy. Section 6 demonstrates the computation of unsafe probabilities and risk contours on example
stochastic process with polynomial dynamics. Section 7 concludes the paper.
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2 Preliminaries

2.1 Notation

The subset of natural numbers between a and b is a..b ⊂ N. The minimum of two quantities will be denoted
as a ∧ b = min(a, b). The set of polynomials with real-valued coefficients in an indeterminate x ∈ Rn is
R[x]. Every polynomial c ∈ R[x] may be uniquely described by a finite sum over multi-indices α ∈ Nn by
c(x) =

∑
α cαx

α. The degree of a polynomial deg c is equal to the largest exponent-sum
∑n

i=1 αi such that
cα ̸= 0. The set of polynomials in x with degree at most 2k is R[x]≤2k.

The set of continuous functions over a set S is C(S). Its subcone of nonnegative continuous functions
is C+(S). Given a product set S ×H, the set of functions that are once-continuously differentiable in the
first variable s and are twice-continuously differentiable in the second variable h is C1,2(S × H). The set
of signed Borel measures supported in S is M(S), and its subset of nonnegative Borel measures supported
in S is M+(S). The support of a measure µ ∈ M+(Rn) is the smallest closed set of points s such that
every open neighborhood Nϵ(s) has positive measure µ(Nϵ(s)) > 0. The sets C+(S) and M+(S) are
in topological duality when S is compact, and they admit a duality pairing ⟨·, ·⟩ by Lebesgue integration:
∀f ∈ C+(S), µ ∈ M+(S) : ⟨f, µ⟩ =

∫
S
f(s)dµ(s). This duality pairing will be extended into a bilinear pairing

between C(S) and M+(S). The µ-measure of a set A ⊆ S may also be expressed as the pairing of µ with the
indicator function IA : µ(A) = ⟨IA, µ⟩ = inf{⟨w, µ⟩ | w ∈ C(S), w ≥ IA}. The mass of µ is µ(S) = ⟨1, µ⟩,
and µ is a probability distribution if this mass is 1. A vital example of a probability distribution is the Dirac
delta δs′ supported only at s′, obeying the point-evaluation pairing rule ∀f ∈ C(S) : ⟨f, δs′⟩ = f(s′). The
Lebesgue (volume) distribution over a space S is λS with ∀f ∈ C(S) : ⟨f, λS⟩ =

∫
S
f(s)ds. The product

measure between µ ∈ M+(S1) and ν ∈ M+(S2) is the unique measure µ⊗ν satisfying ∀A1×A2 ⊆ S1×S2 :
µ⊗ ν(A1 ×A2) = µ(A1)ν(A2).

2.2 Stochastic Processes

A stochastic process is a time-indexed set of random variables {Xt} that are related together through system
dynamics [27] (pushforward of an initial distribution along flow maps). Properties of the stochastic process
will be analyzed in terms of test functions in an appropriate set C (such as C = C([0, T ]×X). The expectation
of a test function v(s, x) at the time t according to the distribution Xt is E[v(t, x) | Xt]. Letting ∆t > 0 be
a time step, the generator L of a stochastic process satisfies (for all appropriate test functions v ∈ domL)

L∆tv(t, x) = lim
∆t′→∆t

E[v(t+∆t′, x) | Xt+∆t′ ]− v(t, x)

∆t′
. (3)

We will express the domain of L as C = domL, such that C is a subset of the preimage of continuous
functions under L. The generator for a discrete-time stochastic process is L∆t with ∆t > 0, which is defined
w.r.t. the test function class C = C([0, T ] × X). For a discrete-time law following xt+∆t = f(t, xt, λt) in
which the time-varying parameter λt ∈ Λ has a probability distribution of ξ(λt), the associated generator
satisfies

L∆tv(t, x) = (∆t−1)

∫
Λ

v (t+∆t, f(t, x, λ)) dξ(λ)− v(t, x). (4)

The generator for a continuous-time (Feller) stochastic process is L∆t=0 for the class C = C1,2([0, T ]×X) [28].
The dynamical behavior of an Itô SDE has a description

dx = f(t, x)dt+ g(t, x)dW, (5)

in which W is the Wiener process. The generator of the SDE in (5) is

L0v(t, x) =∂tv(t, x) + f(t, x) · ∇xv(t, x)

+ g(t, x)T∇2
xxv(t, x)g(t, x)/2. (6)

A sequence of random variables {Yt} is amartingale if E[Yt+δt | {Yt′}t′≤t] = Yt [27] (in the sense of generalized
conditional expectation). The generator L solves a martingale problem for all possible time steps s > 0 and
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test functions v ∈ C [29]. The martingale problem in discrete-time (with s ∈ N) is

0 = E[v(t+ s, x) | Xt+s]− E[v(t, x) | Xt] (7)

−
∑t+s

s′=t E[L∆tv(t, x) | Xs′ ],

and in continuous time (with s ∈ R≥0) is

0 = E[v(t+ s, x) | Xt+s]− E[v(t, x) | Xt] (8)

−
∫ t+s

s′=t
E[L0v(t, x) | Xs′ ].

For the rest of this paper, we will refer to the generator L interchangeably with its stochastic process.
The martingale problem can be described using the theory of occupation measures. Given an initial

condition (point) x0 ∈ X0 ⊆ X and a time t ∈ [0, T ], we refer to x(t | x0) as the trajectory of {Xt} with
generator L starting at the initial distribution δx=x0

. The occupation measure µ ∈ M+([0, T ]×X) and
terminal measure µτ ∈ M+([0, T ] × X) of the stochastic process {Xt} from a starting time t0 up to a
stopping time t∗ satisfies ∀A ⊆ [t0, T ], B ⊆ X:

µ(A×B) =

∫
X0

∫ t∗

t=t0

IA×B (t, x(t | x0)) dt dµ0(x0) (9a)

µτ (A×B) =

∫
X0

IA×B (t∗, x(t∗ | x0)) dµ0(x0). (9b)

The measures in (9) may also be defined with respect to a probability distribution of stopping times t∗ ∈
M+([0, T ]).

A tuple of measures (µ0, µ, µτ ) ∈ M+(X0)×M+([0, T ]×X)2 obeys the martingale relations (7) or (8)
of the stochastic process with generator L

∀v ∈ C : ⟨v, µτ ⟩ = ⟨v(t0, ·), µ0⟩+ ⟨Lv, µ⟩. (10)

Relation (10) is called Liouville equation for Ordinary Differential Equations (ODEs) and is referred to as
Dynkin’s equation in the context of SDEs. We will also equivalently express (10) in a shorthand form by

µτ = δt0 ⊗ µ0 + L†µ. (11)

2.3 Sum-of-Squares Methods

Let c ∈ R[x]≤2k be a polynomial. The polynomial c is nonnegative if ∀x ∈ Rn : c(x) ≥ 0. Verification of
polynomial nonnegativity is generically an NP-hard task. One tractable method to construct nonnegative
polynomials is through SOS representations. The polynomial c is SOS if there exists N polynomials qj ∈ R[x]
such that c(x) =

∑N
j=1 q

2
j (x). The cone of SOS polynomials is Σ[x], and its subset of SOS polynomials with

degree ≤ 2k is Σ[x]≤2k. The set of SOS polynomials equals the cone of nonnegative polynomials only when
n = 1, 2k = 2, or (n = 2, 2k = 4) [30]. SOS polynomials become vanishingly small in the set of nonnegative
polynomials as n and d rise [31].

SOS representations up to fixed degree can be conducted by formulating SDPs. To each polynomial
c ∈ R[x]≤2k, there exists a (typically nonunique) associated polynomial vector vk(x) ∈ (R[x]≤d)

s and a
symmetric Gram matrix Q ∈ Ss such that c(x) = vk(x)

TQvk(x). One such choice of vectors vk(x) is the set
of monomials in x between degrees 0..k, in which case s =

(
n+k
k

)
. A polynomial c is SOS if its Gram matrix

Q is also Positive Semidefinite (PSD) [32].
A Basic Semialgebraic (BSA) set K is a set described by a finite number of bounded-degree polynomial

inequality (Ng) and equality constraints (Nh):

K = {x ∈ Rn | gi(x) ≥ 0, hj(x) = 0,∀i ∈ 1..Ng, j ∈ 1..Nh}. (12)

The class of Weighted Sum of Squares (WSOS) polynomials over K in (12) is the set Σ[K] of polynomials c
that admit a description of

c(x) =σ0(x) +
∑

i σi(x)gi(x) +
∑

j ϕj(x)hj(x) (13a)

σ0, σi ∈ Σ[x], ϕj ∈ R[x]. (13b)
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The set K is compact if there exists a finite R > 0 such that {x | ∥x∥22 ≤ R} ⊇ K. The set is additionally
Archimedean if R − ∥x∥22 ∈ Σ[K]. Not every compact set is Archimedean [33], but if an R verifying com-
pactness of K is known, then the constraint R− ∥x∥22 ≥ 0 can be added to the description of K to render K
Archimedian. Every compact polytope and ellipsoid is also Archimedean [14].

The Putinar Positivestellensatz states that every positive polynomial over K is also a member of Σ[K]
when K is Archimedean [34]. However, the polynomial degrees of the multipliers (σ, ϕ) needed to certify
nonnegativity of such a positive c could be exponential in n and k [35].

3 Unsafe Linear Programs

This section will present LPs to analyze safety of a stochastic process with generator L.

3.1 Assumptions

We will posit the following assumptions throughout this paper:

A1 The state-sets X0, Xu, X are all compact.

A2 The time interval [t0, T ] is compact.

A3 Trajectories stop upon the first exit from X (τX ∧ T ).

A4 The test function set C = dom(L) satisfies C ⊆ C([t0, T ]×X) with 1 ∈ C and L1 = 0.

A5 The set C separates points and is multiplicatively closed.

A6 There exists a countable set {vk} ∈ C such that ∀v ∈ C : (v,Lv) is contained in the bounded pointwise
closure of the linear span of {(vk,Lvk)}.

Assumptions A4-A6 are the same as in Condition 1 of [6]. We note that generators for Markov, SDE,
and Lévy processes evolving in a compact set satisfy A1-A6.

3.2 Measure Program

We will pose a convex but infinite-dimensional LP in order to upper-bound program (2). Such an LP will
be posed in terms of a relaxed occupation measure (µ0, µτ , µ).

Theorem 3.1. The following LP will upper-bound (2) with p∗(t0, X0) ≥ P ∗(t0, X0) for each X0 ⊆ X

p∗(t0, X0) = sup ⟨IXu , µτ ⟩ (14a)

µτ = δt0 ⊗ µ0 + L†µ (14b)

⟨1, µ0⟩ = 1 (14c)

µ0 ∈ M+(X0) (14d)

µ, µτ ∈ M+([t0, T ]×X). (14e)

Proof. Let x0 ∈ X0 be an initial condition and t∗ ∈ [t0, T ] be a stopping time. A set of measures (µ0, µ, µτ )
may be constructed to fulfill constraints (14b)-(14e). To begin, the initial measure µ0 may be chosen as the
Dirac delta δx=x0

. The measure µ can be set to the occupation measure of the stochastic trajectory x(t | x0)
between the initial time of t0 and the stopping time of t∗ ∧ τX . The terminal measure µτ (t, x) may then be
picked as the the time-state distribution at time t∗ (in which trajectories are stopped according to t∗ ∧ τX).
Because there exists a mapping from every feasible point (t∗, x0) of (2) to a set of measures in (16b)-(16f),
it holds that p∗τ (t0, X0) ≥ P ∗(t0, X0).

The function IXu(x) in the objective (14a) is a discontinuous function of x. We can reformulate (14) as
an LP where all terms are continuous in (t, x) (under A1-A6) through the use of the following restriction
lemma:

5



Lemma 3.2 (Theorem 3.1 of [36]). Let S1, S2 be spaces with S1 ⊆ S2, and let ξ ∈ M+(S2) be a measure.
The restriction of ξ to S1 is uniquely given by the measure ν∗ solving the following optimization problem

Q∗ = sup
ν,ν̂

⟨1, ν⟩ (15a)

ξ = ν + ν̂ (15b)

ν ∈ M+(S1) (15c)

ν̂ ∈ M+(S2). (15d)

The objective Q∗ will satisfy Q∗ = ⟨1, ν∗⟩ = ⟨IS1 , ξ⟩. The measure ν̂∗ will be supported on closure(S2 \ S1).

We will define a peak measure µp ∈ M+([t0, T ]×Xu) and a complement measure µc ∈ M+([t0, T ]×X) in
order to split the terminal measure µτ as µτ = µp+µc. This decomposition (through Lemma 3.2) will allow
for the definition of an LP with continuous coefficients in (t, x). This continuity provides strong duality
(under A1-A6) and convergence of the moment-SOS hierarchy to P ∗(t0, X0) from (2) (under A1-A6 and
assumptions on polynomial structure). The LP in which µτ is decomposed as µp + µc is:

Theorem 3.3. The following LP has the same objective value p∗(t0, X0) as in (2):

p∗(t0, X0) = sup ⟨1, µp⟩ (16a)

µp + µc = δt0 ⊗ µ0 + L†µ (16b)

⟨1, µ0⟩ = 1 (16c)

µ0 ∈ M+(X0) (16d)

µ, µc ∈ M+([t0, T ]×X) (16e)

µp ∈ M+([t0, T ]×Xu). (16f)

Proof. 1) Let (µ0, µp, µc, µ) be a feasible point to (16b)-(16f). Then (µ0, µp + µc, µ) is a feasible point to
(14b)-(14e).

2) Let (µ0, µτ , µ) be a feasible point to the constraints (14b)-(14e). Unique measures µp, µc may be
defined according to the restriction Lemma 3.2 with S1 = [t0, T ]×Xu and S2 = [t0, T ]×X by solving

sup ⟨1, µτ ⟩ (17a)

µτ = µp + µc (17b)

µc ∈ M+([t0, T ]×X) (17c)

µp ∈ M+([t0, T ]×Xu), (17d)

with ⟨IXu , µτ ⟩ = ⟨1, µp⟩.
There exists a mapping relating each feasible point of (14) to (16) and vice versa while keeping the same

objective, which proves that the two objectives are equal.

Theorem 3.4. Under assumptions A1-A6, the objectives of (16) and (1b) are equal (p∗(t0, X0) = P ∗(t0, X0)).

Proof. By Theorem 3.1 of [6] (and under Assumptions A1-A6), every tuple (µ0, µ, µτ ) with µ0 ∈ M+([t0, T ]×
X) (with ⟨1, µ0⟩ = 1) and µ, µτ ∈ M+([t0, T ]×X) satisfying a Martingale relation (11) is supported on the
graph of a stochastic process (1b).

The tuple (µ0, µ, µp + µc) from the Martingale relation (11) is supported on the graph of a stochastic
process. The measures µp and µc can be separated according to Lemma 3.2. This concludes the no-relaxation-
gap proof.
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3.3 Function Program

Theorem 3.5. An LP in terms of an auxiliary function v that forms a weak dual (p∗(t0, X0) ≥ d∗(t0, X0))
to (16) is

d∗(t0, X0) = inf
γ∈R

γ (18a)

γ ≥ v(t0, x) ∀x ∈ X0 (18b)

Lv(t, x) ≤ 0 ∀(t, x) ∈ [t0, T ]×X (18c)

v(t, x) ≥ 0 ∀(t, x) ∈ [t0, T ]×X (18d)

v(t, x) ≥ 1 ∀(t, x) ∈ [t0, T ]×Xu (18e)

v ∈ C. (18f)

Strong duality (p∗(t0, X0) = d∗(t0, X0)) will hold under assumptions A1-A4.

Proof. See Appendix A.

Remark 1. Constraints (18b)-(18f) have the same form as a stochastic (time-dependent) barrier function
at a fixed probability level γ (from [37]). Our work involves application of γ as an optimization variable, as
well as a proof of no relaxation gap in Theorem 3.4 under A1-A6.

4 Risk Contour Linear Programs

The LPs in (16) and (18) determine the worst-case probability of unsafety among stochastic trajectories
starting from an initial set X0. The optimal value of (16) and (18) is therefore equal to 1 when X0 = X and
Xu is nonempty (because then ∅ ̸= Xu ⊂ X0 and there exists trajectories starting in the unsafe set). This
section will form a continuous-function LP similar to (18), whose function values evaluated at a given initial
point X0 form a upper-bound on the probability of unsafety when starting at x0. These upper-bounds will
be proven to converge in an L1 sense over X to the true risk function P ∗. Such upper-bounds on unsafety
allow for interpretation of risk when performing path planning tasks.

Let µ0 ∈ M+(X) be a fixed probability distribution (⟨1, µ0⟩ = 1). The µ0-averaged probability of
unsafety is

M∗(t0, µ0) =

∫
X

P ∗(t0, x0) dµ0(x0). (19)

One specific case we will focus on in the examples is where µ0 is the the uniform distribution over X
(µ0 = λX/vol(X)).

4.1 Measure Program

Corollary 1. An LP to upper-bound (2) with m∗(t0, µ0) ≥ M∗(t0, µ0) in general, and m∗(t0, µ0) =
M∗(t0, µ0) under A1-A6, is

m∗(t0, µ0) = sup ⟨1, µp⟩ (20a)

µp + µc = δt0 ⊗ µ0 + L†µ (20b)

µ, µc ∈ M+([t0, T ]×X) (20c)

µp ∈ M+([t0, T ]×Xu). (20d)

Proof. These optimality properties follow from arguments used in Theorem 3.3 (upper-bound by a measure
construction starting from the distribution µ0) and Theorem 3.4 (restriction measures). The measures
(µ, µp + µc) are supported on the graph of the stochastic process L starting from µ0 for every feasible
(µ, µp, µc).

7



4.2 Function Program

For given v ∈ C and µ0 ∈ M+(X), let v(t0, •) be shorthand notation for the function x 7→ v(t0, x) such that
⟨v(t0, •), µ0⟩ = ⟨v(t0, x), µ0(x)⟩. We will modify terms (18a)-(18b) in order to form an LP penalized over the
whole space X with an objective integrating against the weighting distribution µ0:

J∗(t0, µ0) = inf⟨v(t0, •), µ0⟩ (21a)

Lv(t, x) ≤ 0 ∀(t, x) ∈ [t0, T ]×X (21b)

v(t, x) ≥ 0 ∀(t, x) ∈ [t0, T ]×X (21c)

v(t, x) ≥ 1 ∀(t, x) ∈ [t0, T ]×Xu (21d)

v ∈ C. (21e)

Lemma 4.1. The objective (21a) from (21) is upper-bounded by J∗(t0, µ0) ≤ 1.

Proof. The function v(t, x) = 1 is feasible for all constraints (21b)-(21e). Given that µ0 is a probability
measure, the objective in (21a) will satisfy J∗ ≤ ⟨1, µ0⟩ = 1.

We now show that any solution of (21b)-(21e) returns an upper-bound of the probability of unsafety.

Theorem 4.2. Let v be feasible for (21b)-(21e) and let assumptions A1-A6 hold. Then

v(t0, x0) ≥ P (t0, x0) (22)

for every initial condition x0 ∈ X.

Proof. See Appendix B.

Remark 2. Level sets of any v(t, x) solving (21b)-(21e) can therefore be used to upper-bound the risk of
stochastic execution for L when starting at any (t, x0) ∈ [t0, T ]×X.

The notation p(t0, x0) will be subsequently used to denote the function obtained by solving (16) as
x0 7→ p(t0, X0 = {x0}).

Theorem 4.3. Programs (20) and (21) obey strong duality m∗(t0, µ0) = J∗(t0, µ0) under A1-A6.

Proof. This strong duality holds by slight modification of the method used in Theorem 3.5 and Appendix
A.

Theorem 4.4. Let {vk}k≥1 be a sequence of solutions to (21b)-(21e) with ⟨vk(t0, •), µ0⟩ → J∗(t0, µ0) (under
A1-A6). Then vk converges in L1(µ0) to p∗ as in∫

X

(
vk(t0, x0)− p∗(t0, x0)

)
dµ0(x0) −→

k→∞
0. (23)

Proof. See Appendix C.

5 Unsafe Semidefinite Programs

We will approximate programs (18) and (21) through the moment-SOS hierarchy of SDPs, as reviewed
in Section 2.3. In order to apply SOS methods towards convergent approximation, we require additional
assumptions:

A7 The sets X0, Xu, X are all Archimedean BSA sets.

A8 The generator L is closed under polynomials (v(t, x) ∈ R[t, x] =⇒ Lv(t, x) ∈ R[t, x]).

Given a degree k and a generator L obeying Assumption A8, we define the dynamics degree k̃ as

k̃ = ⌈ max
v∈R≤2k[t,x]

deg(Lv(t, x))/2⌉. (24)
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5.1 Unsafe-Probability SDP

The degree-k SOS tightening of program (18) is

d∗k(t0, X0) = inf
γ∈R

γ (25a)

γ − v(t0, x) ∈ Σ[X0]≤2k (25b)

− Lv(t, x) ∈ Σ[[0, T ]×X]≤2k̃ (25c)

v(t, x) ∈ Σ[[0, T ]×X]≤2k (25d)

v(t, x)− 1 ∈ Σ[[0, T ]×Xu]≤2k. (25e)

Remark 3. Constraint (25d) absorbs the polynomial restriction of v ∈ R[t, x]≤2k.

We require the following Lemma to ensure convergence of (25) to (18) as k → ∞.

Lemma 5.1. Under Assumptions A1-A6, all feasible measures µ = (µ0, µ, µc, µτ ) in (16) are bounded.

Proof. Boundedness of nonnegative measures will be proven by the sufficient condition of compact support
and finite mass. Compact support of measures in µ is ensured by A1. The initial measure µ0 is a probability
distribution (⟨1, µ0⟩ = 1) by constraint (16c). The sum µc+µτ likewise has mass 1 by the Liouville constraint
(16b), when passing in the test function v = 1. Given that µc and µτ are each nonnegative measures, it holds
that they both have finite mass (upper-bounded by 1). Lastly, assignment of v = t to (16b) with Lt = 1
results in ⟨1, µ⟩ = ⟨t, µc+µτ ⟩ ≤ T . All measures have bounded masses and compact supports, and therefore
are bounded.

Theorem 5.2. Under assumptions A1-A8, program (25) will converge to (18) with limk→∞ d∗k(t0, X0) =
d∗(t0, X0).

Proof. This convergence will hold by Corollary 8 of [38], because all sets are Archimedean (A7), dynamics
are polynomial (A8), measures are bounded (Lemma 5.1), and the objective value of (25) is finite (bounded
below by 0).

5.2 Risk SDP

The degree-k SOS tightening for the risk-contour program in (21) is

J∗
k (t0, µ0) = inf

∫
X

v(t0, x)dµ0(x) (26a)

− Lv(t, x) ∈ Σ[[0, T ]×X]≤2k̃ (26b)

v(t, x) ∈ Σ[[0, T ]×X]≤2k (26c)

v(t, x)− 1 ∈ Σ[[0, T ]×Xu]≤2k. (26d)

Remark 4. The function v(t, x) = 1 is feasible for constraints (26b)-(26d) at every degree k ∈ N. As a
result, the objective in (26) is always upper-bounded by J∗

k (t0, µ0) ≤ 1.

Theorem 5.3. Under assumptions A1-A8, the risk contour program (26) will converge to (21) with (18)
with limk→∞ J∗

k = J∗.

Proof. The proof of this theorem follows the same steps as in Theorem 5.2 with respect to the measure
program in (20).

Let vk(t, x) ∈ Σ[[0, T ]×X]≤2k be the solution to (26) at degree-k, and let Iu be the 0/1 indicator function
on the unsafe set Xu. Then the probability of unsafety when starting at a point x0 ∈ X is upper-bounded
by

q1:k(x) = min(1, min
k′∈1..k

vk′(t0, x)). (27)

Corollary 2. The sequence of functions q1:k(x) in increasing k will converge in measure µ0 to v(t0, x).

Proof. This corollary follows from Theorem 4.4, in which the sequence {vk′} is used to approximate v∗. The
minimization among all k′ in (27) further sharpens the estimate of v∗.
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5.3 Computational Complexity

We will quantify computational complexity of the degree-k tightenings of (25) and (26) by the size of the
maximal Gram matrices involved in their SOS program. In the typical case where k̃ > k (only violated
under A1-A8 when L maps every polynomial to a constant), the largest Gram matrix will occur in the Lie
constraints (25c) and (26b). The Lie constraints each have n + 1 variables (t, x), so the Gram matrix size

when using the monomial basis is
(n+1+k̃

k̃

)
. All other constraints have a lower degree (k rather than k̃), or

are posed only over the n variables x. The complexity of using an interior-point method to solve the SOS
programs will therefore scale based on O((n+ 1)6d) for fixed d or O(d(n+1)) for fixed n [14, 39].

6 Numerical Examples

MATLAB (2021a) code to reproduce all examples is available at https://github.com/jarmill/prob_

unsafe. All programs are modeled using YALMIP [40] and solved using Mosek 10 [41]. All examples will
involve an initial time of t0 = 0.

6.1 Two-Dimensional Cubic SDE

Our first demonstration analyzes safety of a cubic polynomial SDE from Example 1 of [10]:

dx =

[
x2

−x1 − x2 − 1
2x

3
1

]
dt+

[
0
0.1

]
dW. (28)

Safety of (28) is evaluated within the state space ofX = [−2, 2]2 until a time horizon of T = 5. The unsafe
set is a moon-shaped region Xu = {x ∈ R2 | 0.90832 ≤ (x1+0.5006)2+(x2+0.2902)2, 0.52 ≥ (x1−0.2)2+x2

2}.
The initial set X0 is a circle of radius R0 and center [0.85;−0.75]. Figure 2a plots trajectories of (28) starting
from X0 (magenta region with R0 = 0.2). Note how some sampled trajectories touch the right corner of the
red half-circle Xu (and are therefore unsafe).

Figure 1: Trajectories of SDE (28) (cyan) initialized in a disk X0 (purple boundary), hitting an unsafe region
Xu (red moon).

Table 1 reports the probability of unsafety computed by program (25) for a circular initial set of radius
R0.
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Table 1: Unsafe probability upper-bounds for system (28)

order 1 2 3 4 5 6
R0 = 0 1 0.9442 0.6072 0.4805 0.4068 0.3696
R0 = 0.2 1 0.9736 0.7943 0.7091 0.6390 0.6132

Figure 2a plots the unsafety upper-bounding function min(1, v(0, x)) at T = 5 acquired by solving (25)
at order k =6 with R0 = 0.2. The unsafe set Xu is the red moon. The magenta circle is the boundary of
the initial set X0. Note how the probability estimate is sharper in the region surrounding X0, as compared
to the sea of Prob = 1 saturation away from X0.

In contrast, Figure 2b solves the order-6 SOS tightening of program (21) to produce a risk map v valid
in X = [−2, 2]2. This risk map results in v(0, [0.85;−0.75]) = 0.4366, which is looser than the order-6
probability bound of 0.3696 from Table 1. However, Figure 2b produces an interpretable visualization of risk
across the entire set X.

(a) solution of (25) (b) solution of (26)

Figure 2: Risk levels of the unsafety upper-bound function v(0, x) at t = T = 5 and order k =6 for SDE (28)
initialized in a disk X0 (purple boundary) with unsafe region Xu (red moon).

6.2 Adjustment of Time Horizons

In the second experiment, we consider a linear SDE with dynamics

dx = [−x2;x1]dt+ [0; 0.1]dW (29)

The unsafe set for this example is a half-circular region with Xu = {x | 0.52 ≥ (x+0.5)2+(x2+0.75)2, x2 ≥
−0.75}. The plots in Figure 3 are obtained by solving (26) at order k = 6 for time horizons of T ∈ {1, 3, 5}
and a state set of X = [−2, 2]2. As the time horizon T increases, so too does the area of X with high
probabilities of unsafety. The growth of the high-probability regions occurs approximately in a clockwise
pattern from Xu, matching the interpretation of (29) as simple harmonic motion perturbed by diffusion in
the vertical coordinate.
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(a) T = 1 (b) T = 3

(c) T = 5

Figure 3: Risk contours for the linear SDE in (29) in increasing time horizon T w.r.t. unsafe region Xu (red
half-disk)

6.3 Discrete-time example

This subsection will focus on a discrete-time stochastic process involving a time-step of τ = 1. The law of
this stochastic process with parameter λ ∈ R is

x+ =

[
−0.3x1 + 0.8x2 + x1x2λ/4

−0.9x1 −−0.1x2 − 0.2x2
1 + λ/40

]
, (30)

in which λ is i.i.d. sampled according to a unit-normal distribution at each time (λt ∼ N (0, 1)).
We evaluate the safety of (30) with respect to the state set X = [−1.5, 1.5]2, the time horizon of T = 10,

and the half-circle unsafe set of Xu = {x | 0.42 ≥ (x1 − 0.8)2 + (x2 − 0.2)2, x1 + x2 ≥ 1}. Stochastic
trajectories of (30) evolve starting at an circular initial set with radius R0 and center [−1; 0]. Figure 4 plots
5,000 sampled trajectories (blue dots) with respect to the magenta circular initial set and the red half-circle
unsafe set. Some of the sampled trajectory points fall inside the red half-circle, corresponding to unsafety
when beginning in X0.

Table 2 reports probabilities of unsafety for (30) found by solving (25) at initial radii R0 = 0 and R0 = 0.4.
To improve numerical conditioning, we normalize the time-steps from (τ, T ) = (1, 10) to (τ, T ) = (0.1, 1)
without affecting the autonomous dynamics in (30).

Figure 5a plots risk contours found by solving (25) at order 6 for R0 = 0.4. Figure 5b plots risk contours
v(0, x) acquired from (26) at degree k =6 and time t = T = 10. The returned risk map has an evaluation of
v(0, [−1; 0]) = 0.4915, as compared to the (25) estimate of 7.052× 10−4 at R0 = 0.
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Figure 4: Trajectories of discrete-time (30) (cyan) initialized in a disk X0 (purple boundary), hitting an
unsafe region Xu (red half disk).

Table 2: Unsafe probability upper-bounds for system (30)

order 1 2 3 4 5 6
R0 = 0 1.00 1.00 0.1569 0.0103 1.871e-3 7.052e-4
R0 = 0.4 1.00 1.00 0.9801 0.7054 0.5225 0.4017

(a) solution of (25) (b) solution of (26)

Figure 5: Risk levels of unsafety upper-bound function v(0, x) at t = T = 10 and order k =6 for SDE (30)
initialized in a disk X0 (purple boundary) with unsafe region Xu (red moon).

7 Conclusion

This paper presents a method to analyze the probability of unsafety for stochastic processes by forming LPs
in occupation measures. These LPs are upper-bounded by the moment-SOS hierarchy of SDPs, yielding a
convergent sequence of bounds to the true probability of unsafety. Modification of the objective leads to the
development of visually interpretable risk contours for use in analysis and motion planning. The presented
method can be used for any stochastic process satisfying assumptions A1-A8 (compactness, described by
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generators, having a polynomial description).
Future work involves finding redundant constraints to refine and improve the unsafe-probability bounds.

Other work includes extension to Conditional Value-at-Risk-minimizing stochastic control methods.
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A Strong Duality

This appendix will prove strong duality between (16) and (18) by using arguments from Theorem 2.6 of [42].
We collect the variables in (16) and (18) respectively into,

µ = (µ0, µ, µc, µp) ℓ = (γ, v). (31)

Variable spaces related to µ are,

X ′ = C(X0)× C([0, T ]×X)2 × C([0, T ]×Xu) (32)

X = M(X0)×M([0, T ]×X)2 ×M([0, T ]×Xu),

with nonnegative subcones of

X ′
+ = C+(X0)× C+([0, T ]×X)2 × C+([0, T ]×Xu) (33)

X+ = M+(X0)×M+([0, T ]×X)2 ×M+([0, T ]×Xu).

Corresponding spaces to ℓ are

Y ′ = C × R (34)

Y = C′ × 0. (35)

Following the notation of [42], we write that Y+ = {0Y} and Y ′
+ = Y ′. We note the containments

of µ ∈ X+, ℓ ∈ Y ′, and also that (X ,X ′) form a pair of topological dual spaces under Assumption A1.
The topologies for the spaces X and Y ′ are the weak-* topology and sup-norm-bounded weak topology
respectively.

An adjoint pair of affine maps A and A′ may be defined as

A(µ) = [µp + µc − L†µ− δt0 ⊗ µ0, ⟨1, µ0⟩] (36)

A∗(ℓ) = [γ − v(t0, •), −Lv, v, v],

with vectors describing the cost and constraint terms as

b = [0, 1] (37a)

c = [0, 0, 0, 1]. (37b)

Pairings with the vectors in (37) satisfy

⟨c,µ⟩ = ⟨1, µ⟩ (38a)

⟨ℓ,b⟩ = γ. (38b)

Problem (16) may be expressed as

p∗(t0, X0) = sup
µ∈X+

⟨c,µ⟩ b−A(µ) ∈ Y+. (39)

Similarly, the function LP in (18) can be expressed as

d∗(t0, X0) = inf
ℓ∈Y′

+

⟨ℓ,b⟩ A′(ℓ)− c ∈ X+. (40)

Sufficient conditions to prove strong duality between (39) and (40) (by Theorem 2.6 of [42]) are:
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R1 All feasible measures µ ∈ X+ with b−A(µ) ∈ Y+ are bounded, and there exists such a feasible µ.

R2 All functions used to define c, b, A are continuous.

Boundedness of measures in R1 is proven in Lemma 5.1, and feasibility of a measure solution is demon-
strated by the construction process used in the proof of Theorem 3.3. For R2, we note that both c and
b in (37) are constant and are therefore continuous. Additionally, the set C is specifically chosen as the
preimage of continuous functions under L. R1 and R2 are both satisfied under assumptions A1-A6, thus
proving strong duality.

B Superlevel Approximation of Risk Map

This appendix provides the proof of Theorem 4.2.

B.1 Supermartingale Property

We first introduce the notion of supermartingales, and then note that any feasible v for (21b)-(21e) is a
supermartingale.

Definition B.1. A process {Yt} is a supermartingale if E[Yt+∆t | {Yt}] ≤ Yt [29].

Proposition B.1. Any v that satisfies (21b) and (21e) is a supermartingale for the process L [28].

Proof. Let {Xt} be the state-dependent distribution for a trajectory of the stochastic process L in (1b),
respecting exit time t∗ ∧ τX . This set of probability distributions satisfies the Martingale property of
(7) (discrete-time) or (8) (continuous-time) as appropriate. Given that Lv ≤ 0 from (21), it holds that
E[L0v(t, x) | Xs′ ] ≤ 0 for every stopping time s′ adapted to t∗ ∧ τX . The supermartingale relation
E[v(t+ s, x) | Xt+s] ≤ v(t, x) therefore holds for v.

The following lemma uses the previous supermartingale criterion from Proposition B.1 in combination
with Doob’s supermartingale inequality to provide a probability bound on v.

Lemma B.2 (based on Lemma 6 of [10]). Let v(t, x) ∈ C be a nonnegative function over [t0, T ] × X and
also form a supermartingale with respect to L and Xt. For a value λ ≥ 0, an initial point x0 ∈ X, and a
L-trajectory x(t) starting from x0 at time t0, the following inequality holds:

Prob{Xt}

[
sup

t∈[t0,T ]

v(t, x(t)) ≥ λ

]
≤ v(t0, x0)/λ. (41)

Lemma B.2 modifies Lemma 6 of [10] by stopping at time T and allowing for time-dependent functions
v(t, x).

B.2 Superlevel Property

Theorem 4.2 can now be proven based on arguments from Theorem 7 of [10]. By constraint (21d), the unsafe
set Xu is inside the 1-superlevel set of v(t, x) at every time t ∈ [t0, T ]. This superlevel relation implies that

P (t0, x0) = sup
t∗∈[t0,T ]

Prob{Xt∗} [x(t
∗) ∈ Xu | x0] (42)

≤ Prob{Xt}

[
sup

t∈[t0,T ]

v(t, x(t)) ≥ 1 | x0

]
.

Through Lemma B.2 with λ = 1, it holds that

Prob{Xt}

[
sup

t∈[t0,T ]

v(t, x(t)) ≥ 1 | x0

]
≤ v(t0, x0), (43)

thus proving the theorem.
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C Risk Contour Convergence

This appendix will provide a proof of Theorem 4.4.
We first notice that

0 ≤ p∗(t0, x0) = sup{⟨1, µp⟩ | µp + µc = δ(t0,x0) + L†µ}
= inf{v(t0, x0) | Lv ≤ 0 ; v ≥ IXu}

by applying Theorem 4.2 (using A1-A6) to the case where µ0 = δx0
(to have strong duality and thus access

the function interpretation of the problem). We remark that our vk is feasible for the dual problem on
functions (21), so by optimality of p∗(t0, x0) for each x0 ∈ X0, one has vk(t0, x0) ≥ p∗(t0, x0). Moreover,
as J∗(t0, µ0) ≤ 1 < ∞ by Lemma 4.1, each vk(t0, •) is µ0-integrable, and thus the function v⋆(t0, •) is
µ0-integrable as well. It remains to prove that their difference vk(t0, •) − p∗(t0, •) ultimately vanishes in a
µ0-sense. This vanishing difference is proven by contradiction: suppose that there exists a η > 0 such that
for all k ∈ N, there is a φ(k) ≥ k with ⟨vφ(k)(t0, •)− p∗(t0, •), µ0⟩ ≥ η (which is the negation of (23)). Then,
one has

⟨p∗(t0, •), µ0⟩ ≤ ⟨vφ(k)(t0, •), µ0⟩ − η −→
k→∞

J∗(t0, µ0)− η.

However, as we already noticed, p∗(t0, x0) is feasible for (21), so this is a contradiction with optimality of the
value J∗(t0, µ0) (given that J∗ − η < J∗). Such a contradiction proves (23), and therefore proves Theorem
4.4.
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