Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2024

Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures

Résumé

This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Value-at-Risk (VaR) of a state function along SDE state distributions. The VaR problem is upper-bounded by an infinite-dimensional Second-Order Cone Program in occupation measures through the use of one-sided Cantelli or Vysochanskii-Petunin inequalities. These upper bounds on the true quantile statistics may be approximated from above by a sequence of Semidefinite Programs in increasing size using the moment-Sum-of-Squares hierarchy when all data is polynomial. Effectiveness of this approach is demonstrated on example stochastic polynomial dynamical systems.
Fichier principal
Vignette du fichier
main.pdf (602.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04055180 , version 1 (01-04-2023)

Identifiants

Citer

Jared Miller, Matteo Tacchi, Mario Sznaier, Ashkan Jasour. Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures. CDC 2023 - 62nd IEEE Conference on Decision and Control, Dec 2023, Singapore, Singapore. pp.4836-4842, ⟨10.1109/CDC49753.2023.10383958⟩. ⟨hal-04055180⟩
59 Consultations
97 Téléchargements

Altmetric

Partager

More