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Peak Value-at-Risk Estimation for Stochastic

Differential Equations using Occupation Measures

Jared Miller1, Matteo Tacchi2, Mario Sznaier1, Ashkan Jasour3

March 28, 2023

Abstract

This paper proposes an algorithm to upper-bound maximal quantile statistics of a state
function over the course of a Stochastic Differential Equation (SDE) system execution. This
chance-peak problem is posed as a nonconvex program aiming to maximize the Value-at-Risk
(VaR) of a state function along SDE state distributions. The VaR problem is upper-bounded
by an infinite-dimensional Second-Order Cone Program in occupation measures through the
use of one-sided Cantelli or Vysochanskii-Petunin inequalities. These upper bounds on the true
quantile statistics may be approximated from above by a sequence of Semidefinite Programs
in increasing size using the moment-Sum-of-Squares hierarchy when all data is polynomial.
Effectiveness of this approach is demonstrated on example stochastic polynomial dynamical
systems.
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1 Introduction

This paper analyzes maximal (1 − ϵ)-quantile statistics of a state function p(x) for Stochastic
Differential Equation (SDE) trajectories evolving in a compact set X. An example of this type of
quantile statistic for trajectory analysis is in establishing that there exists at least one time with
a 1% chance of the aircraft exceeding a height of 100 meters. This task of quantile estimation is
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related to peak and Value-at-Risk (VaR) estimation, and will also be referred to as the ‘chance-peak’
problem.

The ϵ-VaR is the value at which there is an ϵ-probability of exceedance [1]. Control and portfolio
design typically aims to minimise the VaR. One specific VaR-upper-bounding coherent risk measure
[2] that results in convex programs is the conditional VaR risk measure [3, 4]. The conditional VaR
has been utilized for stochastic optimal control in [5], and for approximation of discrete-time risk-
bounded sets using exponential and logarithmic inequalities with Markov Decision Processes in [6].
In contrast, the chance-peak approach upper-bounds maximum VaR of the continuous-time SDE
state distribution of x(t) across all times. We will solve this problem by maximizing the Cantelli
[7] and Vysochanskij-Petunin (VP) [8] upper bounds for the VaR.

Chance constraints are an adjacent topic to VaR optimization, in which a probability inequality
must hold as a hard constraint. Chance-constrained programs have a wide variety of application in
control theory [9, 10, 11], and are generally intractable to solve explicitly. Approximation methods
for chance constraints include the Cantelli [7] and VP [8] inequalities, and application of these tail-
bounds in control include [12, 13]. The scenario approach for randomized constraint generation will
converge in probability to the chance-constrained optimum, but carries a risk of failure and may
require a large number of samples [14]. The moment-Sum of Squares (SOS) hierarchy of Semidefi-
nite Programs (SDPs) will converge to the chance-constrained optimal solution under appropriate
boundedness conditions [15].

The chance-peak problem is also related to a family of optimal stopping problems which can
be solved using occupation measures. The work in [16] expressed optimal control problems of
Ordinary Differential Equations (ODEs) as an infinite-dimensional Linear Program (LP) in an
initial, terminal, and occupation measure. The peak estimation problem to maximize a state
function p(x) is an instance of optimal control with free terminal time and zero running cost. The
work in [17] generalizes this LP to the stochastic case to find the maximum expectation of p(x)
when dynamics are phrased in terms of their infinitesimal generator (Feller process). Such LPs
will converge to the true solution of the stopping problem under mild convergence, regularity, and
well-posedness assumptions. The moment-SOS hierarchy of finite-dimensional SDPs will converge
to the infinite-dimensional LP optimum if all problem data (e.g., dynamics, constraint sets) are
polynomial-representable [18]. This convergent SDP approach has been used for optimal control
[19], peak estimation [20] including compact-valued uncertainty [21], expectation-maximization of
Lévy processes [22], and option pricing [23]. Other instances of the moment-SOS hierarchy used
to solve stochastic safety problems include Barrier certificates [24], infinite-time averages [25], and
Reach-Avoid sets [26].

The contributions of this paper are:

• An infinite-dimensional Second-Order Cone (SOCP) that upper-bounds the chance-peak pro-
gram using VaR inequalities [7, 8]

• A convergent set of SDPs using the Moment-SOS hierarchy to the SOCP upper bound

• A verification of this approach on example polynomial SDE systems

This paper has the following structure: Section 2 gives an overview of notation, SDEs, and oc-
cupation measures. Section 3 upper-bounds the chance-peak problem using an infinite-dimensional
SOCP in occupation measures. Section 4 reviews the moment-SOS hierarchy and presents a hi-
erarchy of SDPs that approximate the infinte-dimensional chance-peak SOCP. Section 5 provides



numerical examples of the chance-peak problem on ODE and SDE systems. Section 6 concludes
the paper.

2 Preliminaries

2.1 Notation

The n-dimensional real Euclidean space is Rn. The set of natural numbers is N, and its subset of
natural numbers between 1 and N is 1..N . The set of n-multi-indices is Nn. The degree of a multi-
index α ∈ Nn is |α| =

∑n
i=1 αi. A monomial is a term xα =

∏n
i=1 x

αi
i with degree deg xα = |α|.

A polynomial p(x) ∈ R[x] may be uniquely represented in terms of multi-indices α and coefficients
pα as p(x) =

∑
α∈J pαx

α for some finite set J ∈ Nn. The degree of a vector of polynomials

(f ∈ (R[x])N ) is the maximum degree of any coordinate (deg f = maxi∈1..N deg fi). The vector
space of polynomials of degree at most d is R[x]≤d and its dimension is

(
n+d
d

)
. The Second-Order

Cone (SOC) (or Lorentz cone) isQn = {(s, κ) ∈ Rn×R+ : κ ≥ ∥s∥2}, where ∥s∥2 = (s21+. . .+s2n)
1/2

denotes the Euclidean norm.
The vector space of continuous functions over a topological spaceX is C(X), and its nonnegative

subcone is C+(X). The topological dual of a Banach space V is V ∗. The cone of (nonnegative) Borel
measures supported over X is M+(X) and the vector space of signed Borel measures supported
on X is M(X) = M+(X)−M+(X). When X is compact, C(X) and M(X) are topological dual
spaces that have a duality product by Lebesgue integration: for f ∈ C(X), µ ∈ M(X) the duality
product is ⟨f, µ⟩ =

∫
X
f(x)dµ(x). This duality product also induces a duality pairing between

C+(X) and M+(X). As a slight abuse of notation, we extend this duality product to all Borel
measurable functions f : ⟨f, µ⟩ =

∫
X
f(x)dµ(x). The set of k-times continuously differentiable

functions over X is Ck(X).
The indicator function of a set A ⊆ X is IA : X → {0, 1}, and has the values IA(x) = 0 for

x ̸∈ A and IA(x) = 1 for x ∈ A. The measure of A with respect to µ ∈ M+(X) is defined as
µ(A) = ⟨IA, µ⟩. The mass of a measure µ ∈ M+(X) is µ(X) = ⟨1, µ⟩, and µ is a probability
measure if this mass is 1. The support of a measure µ is the set of all points x such that each
open neighborhood Nx of x obeys µ(Nx) > 0. The Dirac delta δx′ supported only at the point
x′ is a probability measure such that ⟨f, δx′⟩ = f(x′) for all f ∈ C(X). Given two measures
µ ∈ M+(X) and ν ∈ M+(Y ), the product measure µ ⊗ ν is the unique measure that satisfies
∀A ⊆ X, B ⊆ Y : (µ⊗ ν)(A× B) = µ(A)ν(B). The pushforward of a function Q : X → Y along
a measure µ(x) is Q#µ(y) and satisfies the relation ∀g ∈ C(Y ) : ⟨g(y), Q#µ(y)⟩ = ⟨g(Q(x)), µ(x)⟩.

The operator ∧ will be used to denote the minimum of two quantities (stopping times) as
a ∧ b = min(a, b). The adjoint of a linear operator L : X → Y is L† : Y ∗ → X∗.

2.2 Probability Tail Bounds and Value-at-Risk

Let ξ be a univariate probability measure ξ(ω) ∈ M+(R) for a coordinate ω ∈ R, with ⟨1, ξ⟩ = 1
and |⟨ω, ξ⟩|, ⟨ω2, ξ⟩ < ∞ (finite first and second moments). In this paper, we define the ϵ-VaR of ξ
as follows:

V aRϵ(ξ) = sup {λ ∈ R | ξ([λ,∞)) ≥ ϵ} . (1)

Let σ2 = ⟨ω2, ξ⟩ − ⟨ω, ξ⟩2 be the variance of the probability distribution ξ.



The Cantelli bound for VaR is [7]

V aRϵ(ξ) ≤ σ
√
1/(ϵ)− 1 + ⟨ω, ξ⟩ = V aRcant

ϵ (ξ). (2a)

The VP bound for the VaR is [8]

V aRϵ(ξ) ≤ σ
√
4/(9ϵ)− 1 + ⟨ω, ξ⟩ = V aRV P

ϵ (ξ). (2b)

The Cantelli bound is applicable for any probability distribution ξ(ω) and value ϵ ∈ [0, 1]. The
VP bound is sharper than the Cantelli bound, but is only valid when ξ is unimodal and ϵ ≤ 1/6.

2.3 Stochastic Differential Equations

Let (Ω,F ,P) be a probability space with time-indexed filtration Ft, X ⊂ Rn be a compact set, and
w be n-dimensional Wiener process. An Itô SDE with a drift function f and diffusion function g is
[27]

dx = f(t, x)dt+ g(t, x)dw. (3)

In this paper, trajectories will start from an initial set X0 ⊆ X and will remain within X in
times t ∈ [0, T ] by virtue of stopping at the boundary ∂X. Define τX as a stopping time (random
variable) corresponding to the time at which the process (3) starting from X0 first touches the
boundary ∂X for the first time. A process of (3) starting from an initial condition x(0) ∈ X0 in
times t ∈ [0, T ] is

x(t) = x(0) +

∫ τX∧T

t=0

f(t, x)dt+

∫ τX∧T

t=0

g(t, x)dw. (4)

Solutions of (4) are unique if there exists finite constants C,D > 0 such that for all (t, x, x′) ∈
[0, T ]×X2, the following Lipschitz and Growth conditions hold [28]:

D∥x− x′∥2 ≥ ∥f(t, x)− f(t, x′)∥2 + ∥g(t, x)− g(t, x′)∥2
C(1 + ∥x∥2) ≥ ∥f(t, x)∥2 + ∥g(t, x)∥2. (5)

The Lipschitz and Growth conditions will hold if (f, g) are locally Lipschitz and the setX is compact.
Distributions of the densities of (4) may be computed by solving a Fokker-Planck equation with
absorbing boundary conditions on ∂X [29, 30].

The generator L associated with the SDE is a linear operator that satisfies ∀v(t, x) ∈ C2([0, T ]×
X) [28]:

Lv(t, x) = ∂tv + f(t, x) · ∇xv +
1

2
g(t, x)T

(
∇2

xxv
)
g(t, x). (6)

The ∇2
xxv term arises from the Itô Lemma. Let τ be a stopping time adapted to the filtration,

defined by τ = τX ∧T . The occupation measure µ ∈ M+([0, T ]×X) corresponding to the stopping
time τ , initial distribution µ0 ∈ M+(X0), and dynamics (3) is ∀A ⊆ [0, T ], B ⊆ X is

µ(A×B) =

∫
X0

∫ τ

t=0

IA×B ((t, x(t | x0))) dt dµ0(x0). (7)

The initial measure µ0 ∈ M+(X0), the occupation measure µ from (7), and the terminal measure
µτ ∈ M+([0, T ] × X) defined by following the SDE (3) from initial conditions x0 ∼ µ0 until the
stopping time τ , are all related by Dynkin’s formula [31]

⟨v, µτ ⟩ = ⟨v(0, x), µ0(x)⟩+ ⟨Lv, µ⟩ ∀v ∈ C2. (8)



Dynkin’s formula is an SDE generalization of the Liouville equation for ODEs. Equation (8)
may be equivalently written in weak form as

µτ = δ0 ⊗ µ0 + L†µ. (9)

An expectation-maximizing optimal stopping problem for the SDE in (3) with a reward function
of p(x) in the region [0, T ] × X, when starting at the initial condition x(0) ∼ µ0 ∈ M+(X0), is
P ∗ = supEµ0 [p(x(τ))]. The work in [17] presents an infinite-dimensional LP in measures to solve
this stopping problem

p∗ = sup ⟨p, µτ ⟩ (10a)

µτ = δ0 ⊗ µ0 + L†µ (10b)

⟨1, µ0⟩ = 1 (10c)

µ, µτ ∈ M+([0, T ]×X) (10d)

µ0 ∈ M+(X0). (10e)

Any µ that is part of a feasible solution (µ, µ0, µτ ) for (10b)-(10e) will be referred to as a relaxed
occupation measure. Program (10) satisfies p∗ ≥ P ∗, and tightness (p∗ = P ∗) is achieved under
the assumptions of Lipschitz continuity and Growth (5), compactness of [0, T ]×X, and continuity
of p(x).

3 Peak Value-at-Risk Estimation

This section will present the chance-peak problem statement, and will also derive the infinite-
dimensional SOCP to upper bound the chance-peak quantile statistic.

3.1 Problem Statement

Let ϵ ∈ [0, 1] be a value for the quantile statistic, X be a compact set, X0 ⊆ X be a set of initial
conditions, and (4) be the solution to an SDE evolving from x(0) ∈ X0 that remains within X until
it stops. For a given initial probability distribution µ0 ∈ M+(X0), and for all t ∈ [0, T ], let x(t) be
the stochastic process of (4) at time t, and let µt ∈ M+(X) be its probability distribution (with
x(t) stopping at ∂X).

3.1.1 Assumptions

The following assumptions will be posed throughout this paper,

A1 The set [0, T ]×X is compact and X0 ⊆ X.

A2 The functions (f, g) satisfy (5).

A3 The state function p(x) is continuous on X.

A4 The initial measure µ0 ∈ M+(X0) is a given probability distribution (⟨1, µ0⟩ = 1).



3.1.2 VaR Problem

Problem 3.1. The chance-peak problem to find the ϵ-VaR of p(x) is

P ∗ = sup
t∗∈[0,T ]

V aRϵ(p#µt∗) (11a)

dx = f(t, x)dt+ g(t, x)dw (11b)

from t = 0 until a stopping time of τX ∧ t∗ (11c)

x(0) ∼ µ0. (11d)

The pushforward p#µt∗ from (11a) is the univariate probability distribution of p(x) at the state
distribution x ∼ µt∗ .

3.1.3 Tail-Bound Upper Bound

Let r be the constant factor multiplying σ in (2) such that

rcant =
√
1/(ϵ)− 1 rV P =

√
4/(9ϵ)− 1. (12)

It is further assumed that the VP-bound will only be used if its conditions are satisfied (ϵ ≤ 1/6,
unimodal). The distribution of p(x) with respect to the state distribution µt∗ is univariate, for
which the relation in (1) and the constants in (2) can be used to upper-bound on Problem 3.1. We
will use the notation ⟨p2, µt∗⟩ to refer to ⟨p(x)2, µt∗(x)⟩.

Problem 3.2. The tail-bound program that upper-bounds the chance-peak (11) with constant r is

P ∗
r = sup

t∗∈[0,T ]

r
√
⟨p2, µt∗⟩ − ⟨p, µt∗⟩2 + ⟨p, µt∗⟩ (13a)

dx = f(t, x)dt+ g(t, x)dw (13b)

from t = 0 until a stopping time of τX ∧ t∗ (13c)

x(0) ∼ µ0. (13d)

3.2 Nonlinear Measure Program

Problem 3.2 can be upper-bounded by an infinite-dimensional nonlinear program in a given initial
probability distribution µ0, terminal measure µτ , and relaxed occupation measure µ, using the
generator L in (6) as

p∗r =sup r
√
⟨p2, µτ ⟩ − ⟨p, µτ ⟩2 + ⟨p, µτ ⟩ (14a)

µτ = δ0 ⊗ µ0 + L†µ (14b)

µτ , µ ∈ M+([0, T ]×X). (14c)

Theorem 3.3. Program 14 is an upper bound on (13) with p∗r ≥ P ∗
r under A1-A4.

Proof. Let t∗ be a stopping time in [0, T ], and let x0 ∈ X0 be an initial condition. Measures
(µ0, µ, µτ ) that satisfy (14b) may be constructed from this (t∗, x0) by µt∗ as the the state distribution
of (4) at time t∗ given µ0, and µ as the occupation measure in (7) associated to this SDE trajectory
with distribution µ0. Because the feasible set to constraint (14b) contains measures induced by all
possible provided SDE trajectories starting from µ0, it holds that p

∗
r ≥ P ∗

r .



Remark 1. The initial distribution µ0 ∈ M+(X0) may be optimized to find a supremal p∗r over all
probability distributions in X0 by adding µ0 as a variable and adding the constraint ⟨µ0, 1⟩ = 1 to
(14).

3.3 Measure Second-Order Cone Program

The nonlinear measure program (14) may be recast as an infinite-dimensional convex SOCP.

Lemma 3.4. Let Jr(a, b) = r
√
b− a2 + a be the objective (14a) with a = ⟨p(x), µτ ⟩ and b =

⟨p(x)2, µτ ⟩. For any convex set C ∈ R × R+ with (a, b) ∈ C, the following pair of programs have
the same optimal value (in which Q3 = {([s1, s2, s3], κ) ∈ R3 × R+ | ∥s∥2 ≤ κ} is an SOC cone):

sup
(a,b)∈C

a+ r
√
b− a2 (15)

sup
(a,b)∈C, z∈R

a+ rz : ([1− b, 2z, 2a], 1 + b) ∈ Q3. (16)

Proof. The new variable z is introduced under the constraint
√
b− a2 ≥ z, implying that z2+a2 ≤ b.

The SOCP equivalence follows from the power-representation of
√
b− a2 from [32, 33], with the

steps of

([1− b, 2z, 2a], 1 + b) ∈ Q3 (17a)

(1− b)2 + 4(z2 + a2) ≤ (1 + b)2 (17b)

(1 + b2)− 2b+ 4(z2 + a2) ≤ (1 + b2) + 2b (17c)

4(z2 + a2) ≤ 4b. (17d)

Theorem 3.5. An infinite-dimensional SOCP with the same optimal value and set of feasible
solutions as (14) given µ0 is

p∗r =sup rz + ⟨p, µτ ⟩ (18a)

µτ = δ0 ⊗ µ0 + L†µ (18b)

u = [1− ⟨p2, µτ ⟩, 2z, 2⟨p, µτ ⟩] (18c)

(u, 1 + ⟨p2, µτ ⟩) ∈ Q3 (18d)

µ, µτ ∈ M+([0, T ]×X), z ∈ R, u ∈ R3. (18e)

Proof. This results from an application of Lemma 3.4 to the objective term (14a). The optimization
variables are now (µτ , µ, z, u).

Corollary 1. Program (18) is convex.

Proof. The objective (18a) is affine in (z, µτ ). Constraints (18b)-(18e) are convex (affine for (18b)
and SOC for (18d)), ensuring convexity of (18).

Remark 2. Problem (18) has an infinite-dimensional affine constraint in (18b) and a finite-
dimensional SOC constraint in (18d).



4 Finite Moment Program

This section will upper-bound (18) utilizing a converging hierarchy of SDPs of increasing size.

4.1 Review of Moment-SOS Hierarchy

All content from this subsection is referenced from [18]. For any multi-indexed sequence m =
{mα}α∈Nn ∈ RNn

, we define the Riesz functional Lm : R[x] → R as follows:

p(x) =
∑

α∈Nn

pαx
α 7−→ Lmp =

∑
α∈Nn

pαmα. (19a)

Let µ ∈ M+(X) be a measure. The α-moment of µ for α ∈ Nn is mα = ⟨xα, µ⟩. The collection
of moments m = {mα}α∈Nn is a moment sequence and has the following property:

∀p ∈ R[x], Lmp = ⟨p, µ⟩. (19b)

A key result to build the moment-SOS hierarchy is the characterization of sequences m that
correspond to moment sequences, i.e. such that (19b) holds for someX ⊂ Rn and some µ ∈ M+(X):

For m ∈ RNn

and h ∈ R[x], we define the localizing bilinear functional Lhm : R[x]×R[x] −→ R
by

Lhm = (p, q) 7−→ Lm(hpq). (20a)

Equipping R[x] with a linear basis (ei)i∈N (e.g. ei(x) = xαi with {αi}i∈N = Nn, an ordering of
monomials such that |αi| < |αj | ⇒ i < j) yields an infinite size matrix representation of Lhm, which
we call the localizing matrixM[hm] = (Lm(h ei ej))i,j∈N. For instance, if h(x) =

∑
β∈Nn hβx

β , using
a basis of monomials with nondecreasing degrees yields, for all i, j ∈ N

M[hm]i,j = Lm(hxαixαj ) =
∑
β∈Nn

hβmαi+αj+β . (20b)

A Basic Semialgebraic (BSA) set is a set defined by a finite number of bounded-degree inequality
constraints such as K = {x | hk(x) ≥ 0 : k = 1..Nc}. Assuming “ball constraints” h1(x) = 1 and
hNc

(x) = R − ∥x∥22 (this can always be enforced if K is compact in Rn, up to adding redundant
constraints), m ∈ RNn

has a representing measure µ ∈ M+(K) such that (19b) holds if, for all
k = 1..Nc, the bilinear functional Lhkm is positive semidefinite, i.e.

∀p ∈ R[x], k = 1..Nc, Lm(hkp
2) ≥ 0. (21a)

or, equivalently,
∀d ∈ N, k = 1..Nc, Md[hkm] ⪰ 0. (21b)

where Md[hkm] is the top left block of size
(
n+d
d

)
of M[hkm], which corresponds to the matrix

representation of Lhm in the finite dimensional space R[x]≤d.
For notational convenience, we define the block diagonal synthetic matrix

Md[Km] = diag(Md−⌈dk/2⌉[hkm])k=1..Nc
(22)

where dk = deg(hk). This synthetic matrix has two important properties, deduced from (20b) and
(21b):



• it exactly involves all the terms mα for |α| ≤ 2d

• (21) holds if and only if Md[Km] ⪰ 0 for all d ∈ N.

The process of increasing the degree d → ∞ when posing Positive Semidefinite (PSD) constraints
on Md[Km] is called the moment-SOS hierarchy.

4.2 Moment Program

The following assumptions are required to utilize the moment-SOS hierarchy in approximating (18):

A5 The sets X0 and X are BSA sets with ball constraints.

A6 The functions f(t, x), g(t, x) are polynomial vector fields and p(x) is a polynomial.

Given an initial measure µ0 ∈ M+(X0), let (m,mτ ) be moment sequences corresponding to
the measures (µ, µτ ) respectively. For each monomial xαtβ with α ∈ Nn, β ∈ N, define the operator
Dαβ(m,mτ ) as the moment counterpart of the operator involved in Dynkin’s formula (9)

Dαβ(m,mτ ) = mτ
αβ − Lm(L(xαtβ)). (23)

Define the dynamics degree D as

D = d+ ⌈max(deg f − 1, 2 deg g − 2)/2⌉. (24)

so that for (α, β) ∈ Nn+1,
|α|+ β ≤ 2d ⇒ deg(L(xαtβ)) ≤ 2D.

Problem 4.1. For d ≥ deg(p), the order-d moment problem that upper-bounds problem (18), given
µ0 is

p∗r,d =max rz + Lmτ p (25a)

z ∈ R,m ∈ R
(2D+n+1

n+1 )
,mτ ∈ R

(2d+n+1
n+1 )

(25b)

Dαβ(m,mτ ) = δβ0⟨xα, µ0⟩
∀(α, β) ∈ Nn+1 s.t. |α|+ β ≤ 2d (25c)

s = [1− Lmτ (p2), 2z, 2Lmτ p] (25d)

(s, 1 + Lmτ (p2)) ∈ Q3 (25e)

Md[([0, T ]×X)mτ ] ⪰ 0 (25f)

MD[([0, T ]×X)m] ⪰ 0, (25g)

where δβ0 denotes the Kronecker symbol that is 1 if β = 0 and 0 otherwise. Note that constraint
(25c) is a finite-dimensional truncation of the infinite-dimensional (18b).

The following boundedness result is required to ensure convergence:

Lemma 4.2. All of (µ, µτ , z) are bounded in (18) under A1-A3.



Proof. A sufficient condition for a measure to be bounded (in the sense that all moments are
bounded) is that it has finite mass and is supported on a compact set. Compactness of [0, T ]×X
holds by A1. Assumption A4 imposes that ⟨1, µ0⟩ = 1. By substituting v(t, x) = 1 (18b), it holds
that ⟨1, µτ ⟩ = ⟨1, µ0⟩ = 1. Performing the same step with v(t, x) = t yields T ≥ ⟨t, µτ ⟩ = ⟨1, µ⟩. It
therefore holds that ⟨p, µτ ⟩ and ⟨p2, µτ ⟩ are bounded. The SOC constraint (18d) ensures that z is
finite, demonstrating that all variables are bounded.

Theorem 4.3. Under A1-A6, the optima in (25) will converge to (18) as limd→∞ p∗r,d = p∗r.

Proof. This convergence will occur by Corollary 8 of [34] (when extending to the finite-dimensional
SOC case) through Lemma 4.2.

Remark 3. The relation p∗d ≥ p∗r ≥ P ∗
r will still hold when [0, T ] × X is noncompact (violating

A1 and A5), but it may no longer occur that limd→∞ p∗r,d = p∗r (the conditions Lemma 4.3 will no
longer apply).

4.3 Computational Complexity

In Problem (25), the computational complexity mostly depends on the number and size of the matrix
blocks involved in LMI constraints (25f,25g), which in turn depend on the number and degrees of
polynomial inequalities describing X (the higher dk = deg(hk), the smaller Md−⌈dk/2⌉[hm]). At

order-d, the maximum size of localizing matrices is
(
n+1+D

D

)
.

Problem (25) must be converted to SDP-standard form by introducing equality constraints be-
tween the entries of the moment matrices in order to utilize symmetric-cone Interior Point Methods
(e.g., Mosek [35]). The per-iteration complexity of an SDP involving a single moment matrix of
size

(
n+d
d

)
scales as n6d [23]. The scaling of an SDP with multiple moment and localizing matrices

generally depends on the maximal size of any PSD matrix. In our case, this size is at most
(
n+1+d

d

)
with a scaling impact of (n+1)6d. The complexity of using this chance-peak routine increases in a
jointly polynomial manner with d and n.

5 Numerical Examples

MATLAB (2022a) code to replicate experiments is available at https://github.com/Jarmill/

chance_peak. Dependencies include Mosek [35] and YALMIP [36]. Monte Carlo (MC) sampling
to empirically find VaR estimates is conducted over 50,000 SDE paths under antithetic sampling
with a time spacing of ∆t = 10−3. All experiments contain a table of chance-peak bounds as well
as solver-times to compute these bounds.

5.1 Two States

Example 1 of [37] is the following two-dimensional cubic polynomial SDE

dx =

[
x2

−x1 − x2 − 1
2x

3
1

]
dt+

[
0
0.1

]
dw. (26)

This example performs chance-peak maximization of p(x) = −x2 starting at the point (Dirac-
delta initial measure µ0) X0 = [1, 1] with X = [−1, 2]× [−1, 1.5] and T = 5. Trajectories of (26) are

https://github.com/Jarmill/chance_peak
https://github.com/Jarmill/chance_peak


Figure 1: Trajectories of (26) with ϵ = 0.5 (dashed red) and ϵ = 0.15 (solid red) bounds

displayed in cyan in Figure 1 starting from the black-circle X0, and four of these trajectories are
marked in non-cyan colors. The ϵ = 0.5 row of Table 1 displays the bounds on the mean distribution
as solved through finite-degree SDP truncations of (10). The bounds at ϵ = {0.15, 0.1, 0.05} are
obtained through the VP expression in (2b) and solving the SDPs obtained from (25). The dotted
and solid red lines in Figure 1 are the ϵ = 0.5 and ϵ = 0.15 bounds respectively at order 5.

Table 1: Chance-Peak estimation of the Stochastic Flow System (26) to maximize p(x) = −x2

order 2 3 4 5 6 MC
ϵ = 0.5 0.8817 0.8773 0.8747 0.8745 0.8744 0.8559
ϵ = 0.15 1.2210 1.1817 1.1689 1.1657 1.1642 0.9142
ϵ = 0.1 1.5009 1.4520 1.4361 1.4323 1.4303 0.9279
ϵ = 0.05 2.1306 2.0613 2.0387 2.0332 2.0305 0.9484

5.2 Three States

An SDE modification of the Twist system from [38] is,

dx =

−2.5x1 + x2 − 0.5x3 + 2x3
1 + 2x3

3

−x1 + 1.5x2 + 0.5x3 − 2x3
2 − 2x3

3

1.5x1 + 2.5x2 − 2x3 − 2x3
1 − 2x3

2

 dt+

 0
0
0.1

 dw. (27)



Table 2: Solver time (seconds) to compute Table 1

order 2 3 4 5 6
ϵ = 0.5 0.417 0.431 1.963 1.659 3.641
ϵ = 0.15 0.216 0.325 1.592 4.178 7.464
ϵ = 0.1 0.213 0.316 1.651 1.339 4.225
ϵ = 0.05 0.222 0.366 0.936 2.446 5.298

Table 3: Chance-Peak estimation of the Stochastic Twist System (27) to maximize p(x) = x3

order 2 3 4 5 6 MC
ϵ = 0.5 0.9100 0.8312 0.8231 0.8211 0.8203 0.7206
ϵ = 0.15 1.1729 1.0813 1.0171 0.9891 0.9755 0.7685
ϵ = 0.1 1.4358 1.3180 1.2217 1.1859 1.1694 0.7801
ϵ = 0.05 2.0288 1.8497 1.6866 1.6299 1.5894 0.7970

This second example performs chance-peak maximization of p(x) = x3 starting at the point
X0 = [0.5, 0, 0] with X = [−0.6, 0.6] × [−1, 1] × [−1, 1.5] and T = 5. VP bounds from solving
the SDEs from (10) and (25) are recorded in Table 3 in the same manner as in Table 1. Figure
2 plots trajectories and bounds of (27) starting from the black-circle X0 point, with four of these
trajectories visibly distinguished. The solid red plane in Figure 2 is the ϵ = 0.15 bound on x3 at
order 6, and the transluscent red plane is the ϵ = 0.5 bound on x3 (also at order 6).

Figure 2: Trajectories of (27) with ϵ = 0.5 (dashed red) and ϵ = 0.15 (solid red) bounds



Table 4: Solver time (seconds) to compute Table 3

order 2 3 4 5 6
ϵ = 0.5 0.526 1.880 5.213 28.269 81.736
ϵ = 0.15 0.397 1.117 3.876 23.302 132.539
ϵ = 0.1 0.210 1.080 6.313 27.829 116.733
ϵ = 0.05 0.185 1.352 4.999 20.863 137.833

6 Conclusion

This paper considered the chance-peak problem, which involved finding upper bounds on the quan-
tiles of state functions p(x) achieved by SDE systems. The true (1 − ϵ)-quantile statistic P ∗ (11)
is upper-bounded by the Cantelli/VP approximation P ∗

r (13), which in turn is upper bounded by
an infinite-dimensional SOCP p∗r (18) and its moment-SOS finite-dimensional SDPs yielding p∗r,d
with limd→∞ p∗r,d = p∗d. Each of these upper-bounds contribute valuable information towards the
analysis of SDEs.

Future work includes finding conditions under which the measure-based upper-bounding does
not add conservatism (e.g. cases where p∗r = P ∗

r ), and utilizing higher-moment tail-probability
inequalities to obtain closer estimates to the VaR [39]. Other work involves studying the duality
structure of (18) with respect to the achievement of strong duality. The techniques introduced
in this paper can also be extended to application domains such as distance estimation [38], Lévy
processes [22], and exit-time statistics [19]. Another avenue involves developing stochastic optimal
control strategies to minimize quantile statistics.
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