AI‐Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns - Université Grenoble Alpes Accéder directement au contenu
Article Dans Une Revue Geophysical Research Letters Année : 2022

AI‐Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns

René Steinmann
Michel Campillo

Résumé

Seismograms always result from mixing many sources and medium changes that are complex to disentangle, witnessing many physical phenomena within the Earth. With artificial intelligence (AI), we isolate the signature of surface freezing and thawing in continuous seismograms recorded in a noisy urban environment. We perform a hierarchical clustering of the seismograms and identify a pattern that correlates with ground frost periods. We further investigate the fingerprint of this pattern and use it to track the continuous medium change with high accuracy and resolution in time. Our method isolates the effect of the ground frost and describes how it affects the horizontal wavefield. Our findings show how AI-based strategies can help to identify and understand hidden patterns within seismic data caused either by medium or source changes.
Fichier principal
Vignette du fichier
Geophysical Research Letters - 2022 - Steinmann - AI%E2%80%90Based Unmixing of Medium and Source Signatures From Seismograms .pdf (3.1 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03960153 , version 1 (27-01-2023)

Identifiants

Citer

René Steinmann, Léonard Seydoux, Michel Campillo. AI‐Based Unmixing of Medium and Source Signatures From Seismograms: Ground Freezing Patterns. Geophysical Research Letters, 2022, 49 (15), ⟨10.1029/2022gl098854⟩. ⟨hal-03960153⟩
26 Consultations
34 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More