Adaptive Boundary Observer Design for coupled ODEs-Hyperbolic PDEs systems - Université Grenoble Alpes
Article Dans Une Revue IFAC-PapersOnLine Année : 2020

Adaptive Boundary Observer Design for coupled ODEs-Hyperbolic PDEs systems

Emmanuel Witrant

Résumé

We consider the state estimation of ηξ hyperbolic PDEs coupled with ηX ordinary differential equations at the boundary. The hyperbolic system is linear and propagates in the positive x-axis direction. The ODE system is linear time varying (LTV) and includes a set of ηθ unknown constant parameters, which are to be estimated simultaneously with the PDE and the ODE states using boundary sensing. We design a Luenberger state observer, and our method is mainly based on the decoupling of the PDE estimation error states from that of the ODEs via swapping design. We then derive the observer gains through the Lyapunov analysis of the decoupled system. Furthermore, we give sufficient conditions of the exponential convergence of the adaptive observer through differential Lyapunov inequalities (DLIs) and we illustrate the theoretical results by numerical simulations.
Fichier principal
Vignette du fichier
IFAC2020.pdf (739.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03511214 , version 1 (04-01-2022)

Identifiants

Citer

Mohammad Ghousein, Emmanuel Witrant. Adaptive Boundary Observer Design for coupled ODEs-Hyperbolic PDEs systems. IFAC-PapersOnLine, 2020, 53 (2), pp.7605-7610. ⟨10.1016/j.ifacol.2020.12.1359⟩. ⟨hal-03511214⟩
55 Consultations
66 Téléchargements

Altmetric

Partager

More