Development of a Pre-Diagnosis Tool Based on Machine Learning Algorithms on the BHK Test to Improve the Diagnosis of Dysgraphia
Résumé
Dysgraphia is a writing disorder that affects a significant part of the population, especially school aged children and particularly boys. Nowadays, dysgraphia is insufficiently diagnosed, partly because of the cumbersomeness of the existing tests. This study aims at developing an automated pre-diagnosis tool for dysgraphia allowing a wide screening among children. Indeed, a wider screening of the population would allow a better care for children with handwriting deficits. This study is based on the world's largest known database of handwriting samples and uses supervised learning algorithms (Support Vector Machine). Four graphic tablets and two acquisition software solutions were used, in order to ensure that the tool is not tablet dependent and can be used widely. A total of 580 children from 2nd to 5th grade, among which 122 with dysgraphia, were asked to perform the French version of the BHK test on a graphic tablet. Almost a hundred features were developed from these written tracks. The hyperparameters of the SVM and the most discriminating features between children with and without dysgraphia were selected on the training dataset comprised of 80% of the database (461 children). With these hyperparameters and features, the performances on the test dataset (119 children) were a sensitivity of 91% and a specificity of 81% for the detection of children with dysgraphia. Thus, our tool has an accuracy level similar to a human examiner. Moreover, it is widely usable, because of its independence to the tablet, to the acquisition software and to the age of the children thanks to a careful calibration and the use of a moving z-score calculation.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|