LoRa Channel Characterization for Flexible and High Reliability Adaptive Data Rate in Multiple Gateways Networks - Université Grenoble Alpes Accéder directement au contenu
Article Dans Une Revue Computers Année : 2021

LoRa Channel Characterization for Flexible and High Reliability Adaptive Data Rate in Multiple Gateways Networks

Ulysse Coutaud
  • Fonction : Auteur
  • PersonId : 1067742
Martin Heusse
Bernard Tourancheau

Résumé

We characterize the LoRa channel in terms of multi-path fading, loss burstiness, and assess the benefits of Forward Error Correction as well as the influence of frame length. We make these observations by synthesizing extensive experimental measurements realized with The Things Network in a medium size city. We then propose to optimize the LoRaWAN Adaptive Data Rate algorithm based on this refined LoRa channel characterization and taking into account the LoRaWAN inherent macro-diversity from multi-gateway reception. Firstly, we propose ADRopt, which adjusts Spreading Factor and frame repetition number to maintain the communication below a target Packet Error Rate ceiling with optimized Time-On-Air. Secondly, we propose ADRIFECC, an extension of ADRopt in case an Inter-Frame Erasure Correction Code is available. The resulting protocol provides very high reliability even over low quality channels, with comparable Time on Air and similar downlink usage as the currently deployed mechanism. Simulations corroborate the analysis, both over a synthetic random wireless link and over replayed real-world packet transmission traces.
Fichier principal
Vignette du fichier
computers-10-00044-v2.pdf (4.06 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03274935 , version 1 (04-03-2024)

Identifiants

Citer

Ulysse Coutaud, Martin Heusse, Bernard Tourancheau. LoRa Channel Characterization for Flexible and High Reliability Adaptive Data Rate in Multiple Gateways Networks. Computers, 2021, 10 (4), pp.44. ⟨10.3390/computers10040044⟩. ⟨hal-03274935⟩
120 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More