Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning

Abstract : The continuously growing amount of seismic data collected worldwide is outpacing our abilities for analysis, since to date, such datasets have been analyzed in a human-expert-intensive, supervised fashion. Moreover, analyses that are conducted can be strongly biased by the standard models employed by seismologists. In response to both of these challenges, we develop a new unsupervised machine learning framework for detecting and clustering seismic signals in continuous seismic records. Our approach combines a deep scattering network and a Gaussian mixture model to cluster seismic signal segments and detect novel structures. To illustrate the power of the framework, we analyze seismic data acquired during the June 2017 Nuugaatsiaq, Greenland landslide. We demonstrate the blind detection and recovery of the repeating precursory seismicity that was recorded before the main landslide rupture, which suggests that our approach could lead to more informative forecasting of the seismic activity in seismogenic areas.
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-02929377
Contributeur : Michel Campillo <>
Soumis le : jeudi 3 septembre 2020 - 13:37:15
Dernière modification le : lundi 12 octobre 2020 - 10:52:06

Fichier

Preprint2_Seydoux_et_al.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Léonard Seydoux, Randall Balestriero, Piero Poli, Maarten De Hoop, Michel Campillo, et al.. Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-17841-x⟩. ⟨hal-02929377⟩

Partager

Métriques

Consultations de la notice

186

Téléchargements de fichiers

146