Building and enhancement of an ASR system for emergency medical settings: towards a better accessibility for allophone and disabled patients - Université Grenoble Alpes Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2020

Building and enhancement of an ASR system for emergency medical settings: towards a better accessibility for allophone and disabled patients

Résumé

In this article we aim to present the adaptation of an automatic speech recognition system for specific and robust applications related to the fields of medicine and disability. It constitutes the first step towards the building of an open source system designed to automatically translate speech into pictograms for allophone speakers or people having cognitive disorders in emergency medical settings. Due to the criticality of an adequate speech recognition in such contexts, we decided to rely on formal grammars representing the natural language used. Some preliminary experiments are displayed in order to evaluate its use in real-life situations.
Fichier principal
Vignette du fichier
ASSETS_BabelDR.pdf (489.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02896653 , version 1 (10-07-2020)

Identifiants

  • HAL Id : hal-02896653 , version 1

Citer

Lucía Ormaechea, Johanna Gerlach, Didier Schwab, Pierrette Bouillon, Benjamin Lecouteux. Building and enhancement of an ASR system for emergency medical settings: towards a better accessibility for allophone and disabled patients. [Research Report] LIG (Laboratoire informatique de Grenoble). 2020. ⟨hal-02896653⟩
112 Consultations
162 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More