Design And Experimental Validation Of A Lateral LPV Control Of Autonomous Vehicles - Université Grenoble Alpes
Communication Dans Un Congrès Année : 2020

Design And Experimental Validation Of A Lateral LPV Control Of Autonomous Vehicles

Résumé

This paper presents a multi-scenario full-range speed lateral automated vehicle controller. A speed-dependent LPV model is designed to deal with two different situations: 1) vehicle tracking capabilities to follow a pre-defined trajectory; and 2) vehicle response to sudden reference changes as occur either when activating the automated system for the first time or when performing a lane-change. The proposed solution is based on the Linear Parameter Varying (LPV) control approach, where an output-feedback dynamical controller is designed based on the Linear Matrix Inequalities (LMIs). The control synthesis is carried out using the Linear Fractional Transformation approach, to reduce the conservatism, combined with the H∞ control problem. Simulation results show the tracking performance and the smoothness of the control inputs which provides a comfortable riding. Finally, the algorithm has been implemented on a robotized Renault ZOE and validates on test tracks, providing encouraging results.
Fichier principal
Vignette du fichier
ITSC20_Design_And_Experimental_Validation_Of_A_Lateral_LPV_Control_Of_Autonomous_Vehicles.pdf (840.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02882631 , version 1 (26-06-2020)

Identifiants

Citer

Hussam Atoui, V Milanés, Olivier Sename, John Jairo Martinez Molina. Design And Experimental Validation Of A Lateral LPV Control Of Autonomous Vehicles. ITSC 2020 - 23rd IEEE International Conference on Intelligent Transportation Systems, Sep 2020, Rhodos (Virtual), Greece. ⟨10.1109/ITSC45102.2020.9294459⟩. ⟨hal-02882631⟩
106 Consultations
332 Téléchargements

Altmetric

Partager

More