Functional expression of arginine kinase impairs recovery from pH stress of Escherichia coli
Résumé
Acid stress in Escherichia coli involves a complex resource- and energy-consuming response mechanism. By overexpression of arginine kinase from Limulus polyphemus in E. coli, we improved the recovery from a transient pH stress. While wild type E. coli resumed growth after a transient pH reduction to pH 3 for 1 h with a rate that was 25% lower than before the stress, the arginine kinase expressing strain continued to grow as rapidly as before. This effect is presumably caused by the physiological function of arginine kinase as a short term energy buffer in the form of phosphoarginine, but a pH-buffering effect cannot be excluded.