Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images

Abstract : This paper explores the problem of change detection in time series of heterogeneous multivariate synthetic aperture radar images. Classical change detection schemes have modeled the data as a realization of Gaussian random vectors and have derived statistical tests under this assumption. However, when considering high-resolution images, the heterogeneous behavior of the scatterers is not well described by a Gaussian model. In this paper, the data model is extended to spherically invariant random vectors where the heterogeneity of the images is accounted for through a deterministic texture parameter. Then, three separate detection prob- lems are considered and generalized likelihood ratio test technique is used to derive statistical tests for each problem. The constant false alarm rate property of the new statistics are studied both the- oretically and through simulation. Finally, the performance of the new statistics are studied both in simulation and on real synthetic aperture radar data and compared to Gaussian-derived ones. The study yields promising results when the data are heterogeneous.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-01975924
Contributeur : Guillaume Ginolhac <>
Soumis le : mercredi 26 février 2020 - 14:59:51
Dernière modification le : vendredi 26 juin 2020 - 14:34:02
Archivage à long terme le : : mercredi 27 mai 2020 - 17:44:23

Fichier

DEMR19002.1581697222_postprint...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ammar Mian, Guillaume Ginolhac, Jean-Philippe Ovarlez, Abdourrahmane Atto. New Robust Statistics for Change Detection in Time Series of Multivariate SAR Images. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2019, 67 (2), pp.520-534. ⟨10.1109/tsp.2018.2883011⟩. ⟨hal-01975924⟩

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

226