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New Robust Statistics for Change Detection in
Time Series of Multivariate SAR Images

Ammar MIAN1,2, Guillaume GINOLHAC2,3, Jean-Philippe OVARLEZ1,4, Abdourrahmane M. ATTO2,3

Abstract—This paper explores the problem of change detection
in time series of heterogeneous multivariate synthetic aperture
radar images. Classical change detection schemes have modelled
the data as a realisation of Gaussian random vectors and have
derived statistical tests under this assumption. However, when
considering high-resolution images, the heterogeneous behaviour
of the scatterers is not well described by a Gaussian model. In
this paper, the data model is extended to Spherically Invariant
Random Vectors where the heterogeneity of the images is
accounted for through a deterministic texture parameter. Then
three separate detection problems are considered and generalised
likelihood ratio test technique is used to derive statistical tests for
each problem. The constant false alarm rate property of the new
statistics are studied both theoretically and through simulation.
Finally, the performance of the new statistics are studied both
in simulation and on real synthetic aperture radar data and
compared to Gaussian-derived ones. The study yields promising
results when the data are heterogeneous.

Index Terms—Image Time Series ; Change Detection ; Syn-
thetic Aperture Radar; Robust detection ; Generalised Likelihood
Ratio Test ; Spherically Invariant Random Vectors

I. INTRODUCTION

A. Motivations and relation to prior works

Recent years have seen an increase in the number of
remotely sensed images of the earth. Synthetic Aperture
Radar (SAR) images are more widely available thanks to
space missions such as Sentinel-1. These radar systems
are known for their all-weather sensing capabilities, which
makes them a good source of information when studying
the evolution of a large area over time. Change Detection
(CD) in these image time series (ITS) is needed for a large
variety of applications such as land-cover monitoring, disaster
management or study of global warming.

CD in SAR images has been a popular subject of study in
the recent years [1]. Since SAR systems are naturally subject
to speckle noise, the statistical framework has been successful
in the analysis of the acquired images. The Gaussian as-
sumption has been widely used to model the pixels of the
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images and has provided solid results for applications such as
target detection [2]. When it comes to CD, several approaches
have been explored. The Coherent Change Detection (CCD)
is a well-known approach that considers local correlations
of pixels between two dates. The pixels at both dates are
concatenated into a unique vector which is then modelled by a
given distribution. Under this formulation, the change has been
parametrised through a scale factor between the covariance
matrices of both dates in [3]. In [4], [5], binary hypothesis
testing has been introduced and both Likelihood Ratio Test
(LRT) and Generalised Likelihood Ratio Test (GLRT) have
been derived. However, since these approaches use local
correlations, they are sensitive to variation of phase between
the two dates. If the conditions are not the same, many false
alarms may arise due to the phase difference.

Other approaches have considered using statistical infor-
mation theory to design a distance between the images [6],
[7]. The pixels are modelled by a given distribution (typically
Gaussian) and classic dissimilarity measures such as Kullback-
Leibler (KL) divergence are used to obtain a comparative
statistic. In this case, the methodology is less sensitive to the
conditions since the local spatial distribution of the data is
used to compute the change map. However, deciding on a
threshold of detection is a rather difficult problem when using
such distances.

Finally, covariance equality test has been introduced in [8],
[9] for the case of two or three dates. Several works [10], [11]
have considered variations of these tests aimed at specific
applications. Recently, an extension to the general case of
T > 2 images has been considered in [12] and a statistic
has been derived using Generalised Likelihood Ratio Test
(GLRT) methodology. In [13], Rao and Wald methodologies
have been explored as well. Testing covariance equality is
a classic problem within the statistical literature namely,
various statistics have been suggested in [14], [15], [16].
When considering time series of multivariate vectors, the
detection of change-point in a series of covariance matrices
has been developed in [17], [18] for financial data analysis.

The works mentioned up to now use a Gaussian assump-
tion which has been successful for standard SAR images.
However, with the increase in resolution obtained in High
Resolution (HR) SAR, the Normal distribution does not fit the
observations well enough [19], [20], [21]. For those kind of
images, an heterogeneity in the power of the pixels is observed
locally. This behaviour has been modelled by introducing
Spherically Invariant Random Vectors (SIRV) [22] which are a
sub-family of the elliptical distributions [23]. This new model
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has presented good results for radar applications [24], [25],
[26].

Covariance equality test under non-Gaussian assumption
has been explored in [27] where a Gaussian-derived statistic
has been modified to work under a large variety of elliptical
distributions. Although the proposed statistics have interesting
asymptotic optimality properties, they use the Sample
Covariance Matrix (SCM) estimator which lacks robustness
in the presence of outliers. For SAR images specifically,
[28] proposed to plug a robust Tyler estimate of covariance
matrices into the Gaussian-derived statistic. Under SIRV
model, [29] proposed a LRT statistic where the same robust
estimates of covariances are used. However, these 2-step
methodologies do not take into account a trace normalisation
constraint which leads to a non Constant False Alarm
(CFAR) property of the statistics. For the case T = 2, the
present authors have proposed in [30] a GLRT statistic which
conserves the CFAR property. The study shows interesting
results of robustness under SIRV distributions.

In this paper, we consider an extension of [30]. The contri-
butions of the present paper are summed-up as:
• We consider the problem of CD in HR SAR images for

the general case T > 2. The heterogeneity on the spatial
neighbourhood is taken into account by using a SIRV
assumption. The texture is assumed to be deterministic
and unknown, and is taken into account in three different
ways leading to separate detection problems.

• We derive statistic of decision for each problem using the
GLRT methodology. We also consider marginal statistics
which are used for the change-point estimation strategy
presented in [31].

• The derivation of the statistics leads to novel fixed-point
estimates for the covariance matrices. The convergence
properties of these estimates are considered. Then the
CFAR property of the new statistics are studied.

• The new statistics are applied on two separate real
datasets and have better performance than Gaussian-
derived ones.

B. Paper Organisation

The paper is organised as follows: section II gives pre-
liminary definitions and provides background on CD under
Gaussian model. In section III an extension of CD under robust
model is presented. Then GLRT for the different problems are
derived in section IV. Section V considers the convergence of
the novel covariance estimates. Then in section VI, statistical
properties of the new statistics are explored. Simulations
are done in section VII on both synthetic and real dataset.
Finally, conclusions are presented in VIII. Proofs are given in
Appendices.

In the scope of this paper, the following notations will
be used: lower-case (resp. Upper-case) bold letters denotes
vectors (resp. matrices). Np, Rp and Cp are the sets of
integer, real and complex p-dimensional vectors. SpH is the
set of Hermitian semi-definite matrices of size p × p. Given
(a, b) ∈ N2, b > a, Ja, bK denotes the set {a, . . . , b}. δik is the

Kronecker symbol. Θ is an arbitrary parameter space. 0p is
the p-dimensional null vector. Ip is the identity matrix of size
p × p. For any given matrix, •T, •H represent respectively
the transpose and transpose conjugate operators. <(•) and
=(•) denote the real and imaginary parts. Notations Tr(•),
|•| and ‖•‖ are the trace, determinant and euclidean norm
operators. vec(•) is the vectorisation operator. Notation •−1

is the inverse operation. The symbol ⊗ denotes the Kronecker
product. Given a scalar valued function f , ∂f

∂• denotes the
gradient of f w.r.t • arranged in a column. 1lK is the indicator
function of set K. x will always represent a random vector
of size p. Any subscript or superscript serves to indicate a
specific observation. Σ will always be an Hermitian matrix of
size p× p. The symbol ∼ means ”distributed as”. H0 and H1

denote both possible hypothesis in a binary hypotheses test
scheme.

II. BACKGROUND ON CHANGE DETECTION UNDER
GAUSSIAN MODEL

In this section we give useful definitions that will be used
in the paper. Then we give some background on CD under
Gaussian model.

A. Preliminary definitions

In general, to detect changes, a small subset of the
image is considered in the form of a sliding window. This
window serves as a mask in order to select the observations
corresponding to a local spatial neighbourhood. We define
N1, N2 the size of this window and N = N1 × N2. We
denote the observations on the window as x

(t)
k . The subscript

k ∈ J1, NK serves to identify the pixel and t ∈ J1, T K,
the date of observation. Let (t1, t2) ∈ J1, T K2, we define
Wt1,t2 = {x(t)

k |k ∈ J1, NK, k ∈ Jt1, t2K}. Figure 1 gives an
illustration of the local data selection.

To simplify the equations, we define the following quanti-
ties:

q (Σ,x) = xHΣ−1x ,

∀k, ∀t, S
(t)
k = x

(t)
k x

(t)
k

H
.
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Figure 1. Illustration of local data selection (N1 = N2 = p = 3) for
detection test. The gray area corresponds to W1,T and the central pixel
(x(t)

5 ) is the test pixel.
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B. Data Model

Each pixel x
(t)
k of the SAR image is modelled as the

realisation of a random multivariate random vector x of size
p with a given probability model denoted px(x; Ω(t)), where
Ω(t) = {θ1(t), . . . ,θm(t)} ∈ Θm are the parameters of the
Probability Density Function (PDF).

The Gaussian assumption is the most widely used in multi-
variate SAR image applications. Indeed, in those images, each
pixel value is the sum of the contribution of many scatterers.
Using the central limit theorem, the Gaussian assumption is
the most natural one. This distribution is parametrised by a
mean vector µ and a covariance matrix Σ. The PDF is given
by:

pCNx (x;µ,Σ) =
1

πp |Σ|
exp (−q (Σ,x− µ)) .

For SAR images, the mean is classically assumed to be zero
due to the multiplicative nature of speckle noise: µ = 0p and
will be omitted in the remainder of the paper. We will write
pCNx (x; Σ) = pCNx (x; 0p,Σ).

The notation θ(t)
∆
= θt will be used henceforth.

C. Detection Schemes

CD in an ITS is a large problem and can be posed in many
different mathematical terms. When using a parametrised
probability model for the pixels, the problem is seen as a
comparison of parameters over the time. In this paper, we
express the CD problematic as:

Consider a Time Series of random vectors x(t) ∼
px (x; Ω(t)); given parameters of interest denoted θ ⊂ Ω,
choose between the two following alternatives:{

H0 : θ1 = . . . = θT = θ0 ,
H1 : ∃(t, t′) ∈ J1, T K2, θt 6= θt′

. (2)

Under this general formulation, a subset θ of the PDF’s
parameters is considered. If the value of these parameters of
interest changes over time, it is considered as a change in the
time series. Φt = Ωt \ θ are parameters of the PDF which
are not considered to be significant for the change in the time
series.

Another scheme of interest is to choose between the two
following alternatives:{

Hmarg
0 : θ1 = . . . = θT−1 = θ0 and θT = θ0 ,

Hmarg
1 : θ1 = . . . = θT−1 = θ01 and θT 6= θ01

. (3)

This scheme’s intent is to test only the last image of the
series while considering that there is no change before. It
is useful in an on-line detection problem, where we want
to integrate the knowledge that there was no change in
order to obtain better performance than a bi-date scheme.
It was considered in [31], for example, where an estimation
strategy for the change-point is presented. We will consider
the derivation of statistic for this problem as well. However,
we will limit ourselves to the study of statistics derived for
scheme (2).

D. Statistics of decision under Gaussian model

Under Gaussian model, it is clear that, under CD schemes
presented previously, the sole possibility is θt = Σt, Φt = ∅.
Many works have studied this problem [14], [15], [16], [27]
and many statistics have been proposed. The case for T =
2 has been especially studied [8], [9], [10]. Recently, [13]
did a comparative study and showed that many statistics are
statistically equivalent and reduced the options available to:
• the GLRT statistic:

Λ̂G =

∣∣∣Σ̂SCM
0

∣∣∣TN
T∏
t=1

∣∣∣Σ̂SCM
t

∣∣∣N
H1

≷
H0

λ, (4)

where:

∀t, Σ̂SCM
t =

1

N

N∑
k=1

S
(t)
k and Σ̂SCM

0 =
1

T

T∑
t=1

Σ̂SCM
t .

(5)
• the t1 statistic which is obtained from Terrell [32] or Rao

[33] tests:

Λ̂t1 =
1

T

T∑
t=1

Tr

[((
Σ̂SCM

0

)−1

Σ̂SCM
t

)2
]

H1

≷
H0

λ. (6)

• the Wald statistic [34]:

Λ̂Wald = N

T∑
t=2

Tr

[(
Ip − Σ̂SCM

1 (Σ̂SCM
t )−1

)2
]

− q

(
N

T∑
t=1

(Σ̂SCM
t )−T ⊗ (Σ̂SCM

t )−1, vec

(
T∑
t=2

Υt

))
H1

≷
H0

λ,

(7)
where

Υt = N
(

(Σ̂SCM
t )−1 − (Σ̂SCM

t )−1Σ̂SCM
1 (Σ̂SCM

t )−1
)
. (8)

For the GLRT statistic at eq. (4), the marginal statistic for
scheme (3) has been derived in [31]:

Λ̂marg
G =

∣∣∣∣∣
T∑
t=1

Σ̂SCM
t

∣∣∣∣∣
TN

∣∣∣∣∣Σ̂SCM
T

∣∣∣∣∣
N ∣∣∣∣∣

T−1∑
t=1

Σ̂SCM
t

∣∣∣∣∣
(T−1)N

H1

≷
H0

λ. (9)

The statistics presented in this section are done using a
Gaussian model which do not take into account the hetero-
geneity of the data. Indeed, as suggested in the introduction,
HR SAR images may have heterogeneous behaviour since the
number of scatterers in each pixel is reduced. In the next
section, we will consider a robust model taking into account
such behaviour.

III. EXTENSION TO NON-GAUSSIAN MODEL

A. Data Model

To take into account the heterogeneity of the data, the SIRV
model is classically used. It is obtained by introducing a scale
factor term, also known as the texture: x ∼

√
τ z, where
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z ∼ CN (0p,Σ) and τ follows a given distribution. Since
we want, in this paper, to derive statistics which are robust to
many classes of distributions, no prior is given on τ . Instead,
we will consider the texture terms as deterministic unknown
parameters:

p
x
(t)
k

(
x

(t)
k ; τ

(t)
k ,Σt

)
= pCN

x
(t)
k

(
x

(t)
k ; τ

(t)
k Σt

)
.

In this model, there exists an indetermination between
the texture and covariance matrix. Indeed, we have
∀α ∈ R+∗, px (x; τ,Σ) = px (x;ατ,Σ/α). Classically,
without loss of generality, Σ is assumed to be normalised:
Tr(Σ) = p.

Under the robust model, the estimation of Σ has been stud-
ied in [35], [36], [37], [38]. When the texture are considered
deterministic, [20] proposed an approximation in the form of
a fixed-point estimator also known as Tyler estimator:

Σ̂TE
t =

p

N

N∑
k=1

S
(t)
k

q
(
Σ̂TE
t ,x

(t)
k

) . (10)

In contrast to the Gaussian case, the estimates of covariance
matrices are normalised by the trace to ensure the uniqueness
of the solution: since the fixed-point’s equation has solutions
to a given scale factor (due to the ambiguity problem), [39]
proposed to impose Tr(Σ̂) = p.

In [28], it was proposed for the case T = 2, to use this
estimator in the statistic of eq. (4) in place of the SCM
estimator in order to obtain a robust distance between covari-
ance matrices. In fact, when considering this methodology, the
statistic loses its CFAR matrix property. Indeed, this is caused
by the normalisation constraint described previously: the ratio
is not invariant when the estimates of covariance matrices are
scaled. Since the normalisation is performed by scaling the
estimates Σ̂t by p/Tr(Σ̂t), the statistic introduces a ratio of
trace terms which are not CFAR.

Moreover, this methodology omit the textures parameters
which may be useful for accounting changes. Indeed, since
the matrices are normalised, the relative power between the
images is contained in the textures parameters.

In this paper, we consider the design of statistics by GLRT
technique using the robust model rather than plugging robust
estimates in Gaussian-derived statistics.

B. Problems Statement

Since in the robust model, the PDF is characterised by two
unknown parameters, several detection strategies are possible.
We consider the following problems:
• Problem 1:

θt =
{
τ

(t)
1 , . . . , τ

(t)
N ,Σt

}
,

Φt = ∅ .
(11)

In this detection problem, we want to detect a change
corresponding jointly to a change in power and in the
shape of covariance matrix. This differs from the classic

Gaussian detection test (where the power is implicitly
tested through the covariance matrix) as the heterogeneity
of the texture on the window of observations is taken
into account in the model.

• Problem 2:
θt = {Σt} ,

Φt =
{
τ

(t)
1 , . . . , τ

(t)
N

}
.

(12)

In this next detection problem, we want to detect
changes in the local correlations between the pixels
without taking into account their relative power. This
scheme is intended for applications in which an alteration
in the power is not a significant change (for example
two images of a scene with different calibrations). In
those situations, Problem 1 is not suited.

• Problem 3:
θt =

{
τ

(t)
1 , . . . , τ

(t)
N

}
,

Φt = {Σt} .
(13)

In the last detection scheme, the detection is done solely
on the texture parameter. This leads to a statistical test
where only the relative power between the images is taken
into account for CD.

IV. DERIVATION OF GLRT FOR PROBLEMS 1,2 AND 3

In this section, we derive the GLRT for each problem of
III-B for both omnibus scheme (2) and marginal scheme (3).

A. GLRT of Problem 1

Proposition IV.1. The GLRT ratio under hypotheses of Prob-
lem 1 for omnibus scheme (2) is the following:

Λ̂MT =

∣∣∣Σ̂MT
0

∣∣∣TN
T∏
t=1

∣∣∣Σ̂TE
t

∣∣∣N
N∏
k=1

(
T∑
t=1

q
(
Σ̂MT

0 ,x
(t)
k

))Tp

TTp
T∏
t=1

(
q
(
Σ̂TE
t ,x

(t)
k

))p H1

≷
H0

λ ,

(14)
where

Σ̂MT
0 = fMT

N,T

(
Σ̂MT

0

)
=

p

N

N∑
k=1

T∑
t=1

S
(t)
k

T∑
t=1

q
(
Σ̂MT

0 ,x
(t)
k

) . (15)

Proof. See Appendix A. A step by step derivation is also
provided in a supplementary material.

Discussion: The statistic obtained here is similar to the
one obtained using Gaussian assumption. The term involving
determinant is the same except that now the estimates are
solution of a fixed-point equation. Σ̂TE

t is the Tyler estimator
of eq. (10). Σ̂MT

0 is similar but corresponds to a different fixed-
point equation involving the observations for all the dates. The
properties of this new estimate will be studied in the next
section.
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Due to the normalisation of covariance matrices, the term
involving determinants is a test involving solely the structure
of the covariance matrices and do not consider the relative
power of the pixels between the dates. The ratio of the
quadratic forms allows to test the change in power in the same
way it is done for the correlations in the determinants term.

Proposition IV.2. The GLRT ratio under hypotheses of prob-
lem 1 for marginal scheme (3) is the following:

Λ̂marg
MT =

∣∣∣Σ̂MT
0

∣∣∣TN∣∣∣Σ̂MT
01

∣∣∣(T−1)N ∣∣∣Σ̂TE
T

∣∣∣N
((T − 1)p)(T−1)NppNp

(Tp)TNp
×

N∏
k=1

(
T∑
t=1

q
(
Σ̂MT

0 ,x
(t)
k

))Tp
(
T−1∑
t=1

q
(
Σ̂MT

01 ,x
(t)
k

))(T−1)p(
q
(
Σ̂T

TE,x
(T )
k

))p
H1

≷
H0

λ ,

(16)
where

Σ̂MT
01 = fMT

N,T−1

(
Σ̂MT

01

)
. (17)

Proof. See Appendix B. A step by step derivation is also
provided in a supplementary material.

B. GLRT of Problem 2

Proposition IV.3. The GLRT ratio under hypotheses of prob-
lem 2 for omnibus scheme (2) is the following:

Λ̂Mat =

∣∣∣Σ̂Mat
0

∣∣∣TN
T∏
t=1

∣∣∣Σ̂TE
t

∣∣∣N
k=N
t=T∏
k=1
t=1

(
q
(
Σ̂Mat

0 ,x
(t)
k

))p
(
q
(
Σ̂TE
t ,x

(t)
k

))p H1

≷
H0

λ , (18)

where

Σ̂Mat
0 = fMat

N,T

(
Σ̂Mat

0

)
=

p

T N

k=N
t=T∑
k=1
t=1

S
(t)
k

q
(
Σ̂Mat

0 ,x
(t)
k

) .
Proof. The detail of this calculation for T = 2 can be found
in [30]. A step by step derivation is also provided in a
supplementary material.

Discussion: The statistic obtained here is different from the
previous one since there is no consideration of the relative
power between the dates. Indeed, this time, the estimates of the
texture parameter are compensated and only serve to test the
correlations between the dates for each pixel of the window.

In fact, the same statistic is obtained if we consider the com-
plex elliptical symmetric model [40] on the self-normalised
observations: x

(t)
k /

∥∥∥x(t)
k

∥∥∥. In this model the relative power
is lost in the normalisation and the correlation structure is
considered.

Σ̂Mat
0 is also a new variant of Tyler’s estimator and its

properties will be studied in the next section.

Proposition IV.4. The GLRT ratio under hypotheses of prob-
lem 2 for marginal scheme (3) is the following:

Λ̂marg
Mat =

∣∣∣Σ̂Mat
0

∣∣∣TN∣∣∣Σ̂Mat
01

∣∣∣(T−1)N ∣∣∣Σ̂TE
T

∣∣∣N ×
N∏
k=1

T∏
t=1

(
q
(
Σ̂Mat

0 ,x
(t)
k

))p
(
T−1∏
t=1

(
q
(
Σ̂Mat

01 ,x
(t)
k

))p)(
q
(
Σ̂TE
T ,x

(T )
k

))p H1

≷
H0

λ ,

(19)
where

Σ̂Mat
01 = fMat

N,T−1

(
Σ̂Mat

01

)
.

Proof. The calculation is very similar to the one done at
Proposition IV.2. A step by step derivation is also provided
in a supplementary material.

C. GLRT of Problem 3

Proposition IV.5. The GLRT ratio under hypotheses of prob-
lem 3 for omnibus scheme (2) is the following:

Λ̂Tex =

T∏
t=1

∣∣∣Σ̂Tex
t

∣∣∣N∣∣∣Σ̂TE
t

∣∣∣N
N∏
k=1

(
T∑
t=1

q
(
Σ̂Tex
t ,x

(t)
k

))Tp

TTp
T∏
t=1

(
q
(
Σ̂TE
t ,x

(t)
k

))p H1

≷
H0

λ ,

(20)
where

Σ̂Tex
t = fTex

N,T,t

(
Σ̂Tex

1 , . . . , Σ̂Tex
T

)
, (21)

=
T p

N

N∑
k=1

S
(t)
k

T∑
t′=1

q
(
Σ̂Tex
t′ ,x

(t)
k

) . (22)

Proof. Very similar to the one of Proposition IV.1 presented
in Appendix A. A step by step derivation is also provided in
a supplementary material.

Discussion: In this last statistic, the detection is done
solely on the texture parameters. This leads to an interesting
estimation: each Σ̂Tex

t is solution of a fixed-point equation
which involves all the estimates Σ̂Tex

t′ . In practice, this can
lead to convergence issues when considering the computation.
This problematic will be treated in the next section and it can
be shown that the estimates can be implemented simply.

The marginal statistic is omitted for this problem. As we
will show hereafter, Λ̂Tex does not have the CFAR matrix
property and is thus not an interesting statistic for schemes
whose objective is to ensure a given significance level.
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V. CONVERGENCE CONSIDERATIONS

A. Theoretical study of convergence

We consider here the validity of the alternate maximisation
done when deriving the new statistics and the convergence
problems that arise. To this end, we consider geodesic con-
vexity (g-convexity) on the manifold SpH as presented in [41]
which is defined as follows:

Definition 1. (Geodesic convexity) Let M be an arbitrary
manifold. For each pair q0, q1 ∈ M, we define a geodesic
qq0,q1t ∈ M for t ∈ [0, 1]. A real valued function f with
domain M if g-convex if f(qq0,q1t ) ≤ tf(q1) + (1 − t)f(q0)
for any q0, q1 ∈M and t ∈ [0, 1].

The g-convexity, which extends the definition of the tra-
ditional Euclidean convexity to curved spaces, is useful for
optimisations done on covariances matrices. Notably, we can
use this property of the log-likelihood to show the following
proposition:

Proposition V.1. Σ̂MT
0 , Σ̂Mat

0 and Σ̂Tex
t are the unique argu-

ments of the global maxima of their respective log-likelihood
cost functions over the observations

Proof. See Appendix C.

This proposition is necessary to justify the alternate max-
imisation done when deriving the expression of the statistics.
However, when considering optimisation on manifolds, this in
itself does not guarantee that the solution corresponding to the
global maxima is part of the manifold. This point is important
since we want a solution that is both computable and in the
set SpH. The following proposition can be effectively shown:

Proposition V.2. Σ̂MT
0 , Σ̂Mat

0 and Σ̂Tex
t are the arguments to

the global minima obtained inside SpH.

Proof. See Appendix D.

Now that we know that the solution of the fixed-point
equations are the unique arguments to the global maximas
of their log-likelihood and that they are obtained inside the
manifold SpH, the convergence of the fixed-point algorithms
can be considered. We have:

Theorem V.3. Let {x(t)
k |k ∈ J1, NK, t ∈ J1, T K} be

a set of observations. Let us define vectors vi ∈ Rp

such that ∀k,∀t, v(T−1)∗N+k = (<(x
(t)
k )T,=(x

(t)
k )T)

T
and

v(2T−1)∗N+k = (−=(x
(t)
k )T,<(x

(t)
k )T)

T
. Let P2TN (•) be the

empirical distribution of samples {vi|i ∈ J1, 2TNK}. Then
the fixed-point algorithms

(
ΣMT

0

)
k+1

= fMT
N,T

((
ΣMT

0

)
k+1

)
and

(
ΣMat

0

)
k+1

= fMat
N,T

((
ΣMat

0

)
k+1

)
converge to unique

solutions up to a scale factor if and only if the following
condition is respected:
(C1) P2TN ({0}) = 0 and for all linear subspaces V ⊂ R2p,
we have P2TN (V ) < dim(V )/2p.

Proof. This result can be obtained using the complex to real
equivalence provided in [23] and by plugging the expression
of the new estimator at eq. (15) in the proof of theorem 3 of

[42]. Since most of the proof is equivalent, it will be provided
in a supplementary material.

The main steps of the proof are the following:
• By using the complex to real transformation presented in

the theorem, we show that the problem can be considered
using real valued observations.

• Since the fixed point equation is preserved using the
transformation x → Mx, for any non-singular matrix
M, we can assume Σ = I2p without loss of generality.

• To prove the sufficient statement, we show using condi-
tion (C1), Σ = I2p and an appropriate bounding, that the
largest and smallest eigenvalues of Σ̂ both converge to
one.

• The necessary statement is obtained by defining a pro-
jector Q on a proper subspace. Multiplying the fixed
point equation when Σ = I2p by (I2p − Q) and using
appropriate bounding allows to obtain the condition on
the dimension.

For practical purposes the condition (C1) can be achieved
when there are at least p+1 linearly independent observations
x

(t)
k , which is ensured in the data model we considered in

the paper. Again, the uniqueness is guaranteed by the trace
normalisation which has to be imposed at each step of the
algorithm. It is important to notice that the convergence
of the algorithms is ensured for any set of observations{

x
(t)
k |t ∈ J1, T K, k ∈ J1, NK

}
that respects condition (C1),

even if the observations do not follow the same distributions
(typically if the hypothesis H1 is correct).

The case of Σ̂Tex
t is in this regard trickier. Indeed, since

each step requires the knowledge of the others estimates, we
propose the cyclic algorithm 1 that will iterate each matrix
alternatively. While it is easy to show that if only one of
the matrices is unknown1 , the fixed-point algorithm will
converge, it is difficult to conclude on a theoretical standpoint
about the convergence of the alternate estimation algorithm.
Nonetheless, when doing extensive simulations, as will be
shown shortly afterwards, on both theoretical and real-data,
there has been no case when the algorithm do not converge,
except when the condition (C1) is not respected.

B. Experimental study of convergence

In order to test the convergence property of matrix estimates,
we consider realisations of random variables x =

√
τ z where

τ follows a Γ-distribution with shape parameter α and scale
parameter β. z is generated through a Gaussian realisation
with covariance matrix chosen to be Toeplitz of the form:

Σ = (σm,n)1≤m≤p
1≤n≤p

,

where : σm,n = ρ|m−n|.

We consider two settings: first, we generate a time series{
x

(t)
k |k ∈ J1, NK, t ∈ J1, T K

}
where each x

(t)
k is distributed

1using the same considerations as in the previous theorem.
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Algorithm 1 Computation of Σ̂Tex
t

1: Initialize ∀t ∈ J1, T K, Σ̂
Tex (0)
t = Ip

2: while d > ε do
3: for t ∈ J1, T K do
4:

Compute:

Σ̂
Tex (n+1)
t = fTex

N,T,t

(
Σ̂

Tex (n)
1 , . . . , Σ̂

Tex (n)
T

)
.

5: Impose Trace normalisation by:

Σ̂
Tex (n+1)
t =

p Σ̂
Tex (n+1)
t

Tr(Σ̂
Tex (n+1)
t )

.

6: end for
7: Compute criterion
8:

d = max


∥∥∥Σ̂Tex (n+1)

t − Σ̂
Tex (n)
t

∥∥∥∥∥∥Σ̂Tex (n)
t

∥∥∥ /t ∈ J1, T K

 .

9: end while

with the same covariance matrix Σ0. Then, we generate a
time series where each x

(t)
k is distributed with a covariance

matrix Σt different for each date. Figure 2 presents a Monte-
Carlo (MC) simulation where the criterion d of convergence
is plotted against the number of iterations n of the fixed-
point algorithm. The plot shows that for whatever the setting,
all estimates converge since the criterion attains the working
precision of the machine. We observe that Σ̂Tex

t needs more
iterations to converge. This was expected, since in this case
three different matrices were estimated while for the others
a single matrix was computed. These results comfort the
theoretical considerations of V-A.
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Figure 2. Convergence property of estimates. Left: Same matrices at each
date. Right: Different matrices at each date. The textures are different at each
date for both settings.

VI. STUDY OF CFAR PROPERTY

A. Theoretical study of the CFAR property

Here, we study the properties of the statistics derived
in Section IV. We consider the CFAR property which is
primordial if we want to apply the statistic in a decision
scheme where the significance level is important.

We have the following propositions:

Proposition VI.1. Λ̂MT (resp. Λ̂marg
MT ) is CFAR texture and

matrix for Problem 1 (resp. marginal Problem 1).

Proof. See Appendix E.

Proposition VI.2. Λ̂Mat (resp. Λ̂marg
Mat ) is CFAR texture and

matrix for Problem 2 (resp. marginal Problem 2).

Proof. The same arguments as used in Proposition VI.1 are
applied here.

Proposition VI.3. Λ̂Tex is CFAR texture but is not CFAR
matrix for Problem 3.

Proof. See Appendix F.

B. Experimental study of the CFAR property

The CFAR texture and matrix behaviour of the new statistics
have been tested in simulation. To this end, a time series
has been generated under the H0 regime of Problem 1 which
also corresponds to H0 for the other problems. The statistics
have been computed in MC trials to generate the plots shown
at Figure 3. The Gaussian statistics of II-D have also been
computed. The plots show that these Gaussian statistics vary
when the texture changes and thus, have not the texture CFAR
property. The new statistics however, do not vary for any
texture parameter tested, which is an improvement. In this
regards, Λ̂Mat is the most robust one since the statistic does
not vary even if the texture equality between the dates is not
respected.

Next, the matrix CFAR behaviour is tested using
∀k, ∀t, τ (t)

k = 1. Figure 4 shows plots of MC trials where
the coefficients for the covariance matrix vary. The plots show
that the Gaussian statistics are CFAR which was demonstrated
in [13]. It shows that Λ̂MT, Λ̂Mat have the CFAR matrix
behaviour while Λ̂Tex has not. This result is coherent with
the theoretical analysis.

VII. PERFORMANCE STUDY OF NEW STATISTICS

In this section, we present results of simulation performed
on synthetic and real dataset. For synthetic data, the same
methodology as the previous section is used for generating
data. Table I reminds the parameters relevant for the simula-
tion.

Table I
SIMULATION-RELEVANT PARAMETERS

α, β ρt p N T

Shape and Scale
for Γ-distribution

Coefficients for
Toeplitz matrices

Size of
vector

Number of
observations

Number of
Images

A. Test of statistics on synthetic dataset

We consider analysing the theoretical performance of the
new statistics. To this end, we consider a time series with T =
10, p = 3, N = 7 with a change at t = 5 and plot Receiver
Operating Characteristic (ROC) curves for each problem.
• Problem 1: Before change, the covariance matrix is

associated with ρ = 0.1. The textures are generated with
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Figure 3. Texture CFAR behaviour. Top-left: Λ̂G. Top-right: Λ̂t1 . Middle-
left: Λ̂Wald. Middle-right: Λ̂MT. Bottom-left: Λ̂Mat. Bottom-Right: Λ̂Tex.
ρ = 0.3 at each date for all the curves.

α = 0.3, β = 0.1 and are equal for each date. After the
change, we have ρ = 0.8 and α = 0.3, β = 0.3 and the
textures are equal for each date.

• Problem 2: Before change, the covariance matrix is
associated with ρ = 0.1. After the change, we have
ρ = 0.8. For any date, the textures are generated using
α = 0.3, β = 0.1 and are different for each date.

• Problem 3: Before and after the change, the covariance
matrix is obtained using a random value for ρ and the
textures are generated using α = 0.3, β = 0.3. Before
change, the textures are equal and after the change, they
are different.

• Gaussian problem: the textures are all fixed to one. Before
the change, the covariance matrix is associated with ρ =
0.1. Ater the change, the covariance matrix is associated
with ρ = 0.8.

Figure 5 gives the results obtained by MC trials. The
thresholds for a given PFa are computed numerically using the
H0 regime of the problem considered. Although not realistic
on real images, this allows, on synthetic data, to have an
experimental threshold that matches the objective PFa even
if the test is not CFAR for the problem considered.

For each problem, the statistic derived yields the best ex-
pected result. The Gaussian statistics have poorer performance
than Λ̂MT and Λ̂Tex for testing a change in the texture. Λ̂Mat

performs the best when there is only a change in the covariance
matrix shape. For the third problem, since there is no change in
the matrices, it is not surprising that the detection rate is low.
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Figure 4. Matrix CFAR behaviour. Top-left: Λ̂G. Top-right: Λ̂t1 . Middle-left:
Λ̂Wald. Middle-right: Λ̂MT. Bottom-left: Λ̂Mat. Bottom-Right: Λ̂Tex.

Λ̂MT appears to be the best option for testing changes on the
textures since for both problems 1 and 3, the performance are
good. This is explained by the fact that the distribution under
H0 of the statistic is less sensitive to a violation of the matrix
equality assumption than it would be from a texture one. Since
in Problem 3 the textures are equal before the change, the
threshold to guarantee the PFa is still low enough to guarantee
good performance. Finally, when the data is strictly Gaussian,
Λ̂t1 and Λ̂G have better results than the robust statistics. This
result is expected, since there is a trade-off between robustness
and performance when considering robust methods. Among
the new statistics, Λ̂Tex does not allow do detect a change in
the shape so its results are expected to be lowest.

B. Test of statistics on real dataset

1) Data description: The proposed statistics have been
tested on real images coming from two different datasets:
SDMS (Courtesy AFRL/RYA) [43] and UAVSAR (Courtesy
NASA/JPL-Caltech). From SDMS, three images of the same
scene, presented at Figure 6, are used. The ground truth is
obtained from [44] for the two dates and [13] for the three
dates. From UAVSAR, two scenes with two images each are
used. They are presented in Figure 7. The ground truth is
collected from [45], [46]. Table II gives an overall perspective
of the scenes used in the study.

2) First analysis: We first try the various Gaussian and
new statistics on the three dates of SDMS and on the Scene
1 of UAVSAR dataset. Figure 8 gives the results relative to
the statistics for SDMS data and Figure 9 for UAVSAR. The
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Table II
DESCRIPTION OF SAR DATA USED

Dataset Url Resolution Scene p T Size Coordinates
(top-left px)

SDMS
CCD Challenge https://www.sdms.afrl.af.mil/ Rg: 0.2m

Az: 0.2m FP0121-FP0124 3 2 1000 × 1000 px [Rg, Az] =
[2055, 2055]

FP0120-FP0121-FP0124 3 3 1000 × 1000 px [Rg, Az] =
[2055, 2055]

UAVSAR
SanAnd 26524 03 Segment 4
April 23, 2009 - May 11, 2015

https://uavsar.jpl.nasa.gov Rg: 1.67m
Az: 0.6m Scene 1 3 2 2360 × 600 px [Rg, Az] =

[2891, 28891]

Scene 2 3 2 2300 × 600 px [Rg, Az] =
[3236,25601]
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Figure 5. ROC curves obtained on synthetic data. Top: Problem 1. Middle-Up:
Problem 2. Middle-down: Problem 3. Bottom: Gaussian setting.

values for Λ̂t1 and Λ̂Wald are omitted since they have similar
behaviour than Λ̂G. Qualitatively, each statistic is high at the
location of the changes given by the ground truth. For both
dataset, Λ̂Mat seems to have poorer performance since the
values of the statistic are not much higher on the changes
compared to the background. For UAVSAR data, a linear
pattern appears in the bottom-right corner and responds highly

Figure 6. SDMS Dataset. Top-left: FP0120. Top-middle: FP0121 . Top-right:
FP0124. Bottom-left: Ground Truth FP0120-FP0121-FP0124. Bottom-right:
Ground Truth FP0121-FP0124.

Figure 7. UAVSAR Dataset in Pauli representation. Left: April 23, 2009.
Middle: May 15, 2011. Right: Ground Truth. Top: Scene 1. Bottom: Scene 2.

for all detectors except for Λ̂MT and Λ̂Tex. However, it is
difficult to conclude solely on those qualitative terms.

To quantify the performance of the statistics, experimental
ROC curves are plotted using the Ground truth, denoted
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Figure 8. Value of the different statistics for SDMS FP0120-FP0121-FP0124.
p = 3, N1 = N2 = 11.

1lGt(x, y) associated with spatial coordinates (x, y), by com-
puting the following:
• Probability of false alarm:

PFA = NFD/NNC ,

where: NFD =
∑
x,y

(
Λ̂(x, y) ≥ λ

)
× (1− 1lGt(x, y)) ,

NNC =
∑
x,y

(1− 1lGt(x, y)) .

• Probability of detection:

PD = NGD/NC ,

where: NGD =
∑
x,y

(
Λ̂(x, y) ≥ λ

)
× 1lGt(x, y) ,

NC =
∑
x,y

1lGt(x, y) .

Figure 10 shows the results for each dataset and a size of
analysis window of N1 = N2 = 11. It appears that Λ̂MT has
the overall best performance: it has similar results to Λ̂G on
SDMS dataset but performs better on UAVSAR dataset. Each
Gaussian-derived statistic has similar performance but Λ̂G

appears to have better results than Λ̂t1 and Λ̂Wald.

3) ROC plots: These results can be interpreted as follows:
on the SDMS dataset, while the resolution is high, the images
are globally homogeneous. In fact, much of the details are
not visible and the objects appear to be blurry. This means
that in practice, on a small local neighbourhood, the Gaussian
model is accurate and thus that the Gaussian-derived statistics
perform well. Nonetheless, the new statistics, except Λ̂Mat,
do not have lower performance and can still have better
performance when the size of the neighbourhood chosen is
high as will be shown afterwards. On the other hand, the
objects are better resolved on the UAVSAR. The transitions

Figure 9. Value of the different statistics for UAVSAR Scene 1. p = 3,
N1 = N2 = 11.

are sharper which means that an heterogeneous model is more
accurate and thus that the new statistics will perform better.
The difference of performance for UAVSAR scene 2 can be
explained by the fact that dynamic between the darker zones
and the bright ones is much higher than in the scene 1.

For the datasets used in this paper, Λ̂Mat does not perform
well. This is due to the fact that the detection omits the
texture parameters which are responsible for the power. In
these datasets, the ground truth corresponds to the arrival or
disappearance of strong scatterers and thus, the power has an
important role. As explained before, Λ̂Mat allows to detect
changes which are focused on the correlation structures and
is not appropriate for those kinds of change.
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Figure 10. PD versus PFA on real data. Top-left: SDMS FP0121-FP0124.
Top-right: FP0120-FP0121-FP0124. Bottom-left: UAVSAR Scene1. Bottom-
right: UAVSAR Scene 2. For all images, p = 3, N1 = N2 = 11.
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4) Increasing the size of window: In order to test the impact
of the size of the analysis window, we fix an experimental
PFA = 10−2 and plot the PD against the size of the window.
Figure 11 gives the results for all datasets.

By increasing the size of window, the detection rate im-
proves. It can be explained by the fact that the estimation step
has been performed on more data and is thus more precise.
The drawback is that the detection is obtained with a lower
spatial resolution.

When increasing the size of the window, Λ̂MT and Λ̂Tex

perform better than the Gaussian statistics, especially on
UAVSAR Scene 2. This is expected, since increasing the size
of the window means that the data are spread over a large
spatial leading to an increase of the heterogeneity due to the
presence of many scatterers in the scene.
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Figure 11. PD as a function of window size at PFA = 10−2. Top-left: SDMS
FP0121-FP0124. Top-right: FP0120-FP0121-FP0124. Bottom-left: UAVSAR
Scene1. Bottom-right: UAVSAR Scene2. For all images, p = 3.

5) Increasing the dimension of pixels: Finally we consider
the performance if the size of vector p increases. To this end,
we exploit the wavelet decomposition method presented in
[24], [47] which allows to decompose a monovariate SAR
image into canals corresponding to a physical behaviour of
the scatterers. Using this decomposition on all polarimetric
canals of SDMS dataset allows to have an image with p = 27.
The decomposition is not performed on UAVSAR dataset,
since it does not exhibit a physical diversity using the wavelet
decomposition. Figure 12 gives the result of CD for all the
statistics. When compared to the performance using solely
polarimetric information, it appears that using this method, the
performance are lower when the PFA is very low, while they
are improved for PFA > 10−1. The case of of Λ̂Tex, which
has significantly better performance, highlights again that the
texture parameter plays a main role in CD applications.

VIII. CONCLUSION

In this paper, we considered the problem of CD in an
ITS of heterogeneous SAR images. by taking into account
the heterogeneity through a SIRV model, we proposed three
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Figure 12. PD versus PFA on SDMS FP0121-FP0124 with wavelet decom-
position.

detection schemes and derived statistics using GLRT tech-
niques. The convergence and consistency properties of the
estimates have been considered and the CFAR properties of
these statistics have been studied on a theoretical standpoint
and in simulation. Λ̂Tex does not have the matrix CFAR
property which is essential in many applications.

The statistics have been applied in simulation, where each
statistic has good results under the conditions of its detection
problem. Λ̂Mat has proven to have the most robust behaviour.
Finally, the statistics have been tested on real SAR data and
Λ̂MT has obtained the overall best performance in terms of
detection. This highlights that for many changes, the texture
information has to be taken into account in the detection
problem.

APPENDIX A
PROOF OF PROPOSITION IV.1

Proof. The GLRT assumes computing the two following like-
lihoods:

L0 = pW1,T
(W1,T ;θ0,Φ1, . . . ,ΦT ) ,

L1 = pW1,T
(W1,T ;θ1, . . . ,θT ,Φ1, . . . ,ΦT ) ,

where
θ0 = {τ1, . . . , τN ,Σ0} ,

∀t, θt =
{
τ

(t)
1 , . . . , τ

(t)
N ,Σt

}
,

∀t, Φt = ∅ ,

and then computing

max
{θ0,Φ1,...,ΦT }

L0 and max
{θ1,...,θT ,Φ1,...,ΦT }

L1 .

• Let us consider L0 first. Since the observations are
assumed to be independent, we have

L0 =

t=T
k=N∏
t=1
k=1

pCN
x
(t)
k

(
x

(t)
k ; τkΣ0

)
.

Then in order to maximise L0, we consider the optimi-
sation:

θ̂0 = argmax
θ0

logL0 (θ0) .

This is done by optimising separately for each separate
parameter, assuming the others being constant, and then
plugging back the estimates when needed. The validity
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of this methodology is tackled in section V.

We have:

logL0 = −πTNp − T N log |Σ0| − T p
N∑
k=1

log(τk)

−

t=T
k=N∑
t=1
k=1

q
(
Σ0,x

(t)
k

)
τk

. (23)

Let k ∈ J1, NK, we solve:

∂ logL0

∂τk
= −Tp

N∑
k=1

1

τk
+

T∑
t=1

q
(
Σ0,x

(t)
k

)
τ2
k

= 0 ,

which yields:

τ̂k =
1

Tp

T∑
t=1

q
(
Σ0,x

(t)
k

)
. (24)

Recall complex differentiation results [20]:

∂ log |Σ|
∂Σ

= Σ−1,

∂q
(
Σ,x

(t)
k

)
∂Σ

= −S
(t)
k Σ−2 .

(25)

We solve:

∂ logL0

∂Σ0
= −T N Σ0

−1 +

t=T
k=N∑
t=1
k=1

S
(t)
k

τk
Σ−2

0 = 0p2 ,

which yields:

Σ̂0 =
1

T N

t=T
k=N∑
t=1
k=1

S
(t)
k

τk
. (26)

Then by plugging back the estimates of textures at eq.
(24), we obtain the expression given at eq. (17) that we
denote Σ̂MT

0 . We have:

θ̂0 =
{
τ̂1, . . . , τ̂N , Σ̂

MT
0

}
. (27)

• Now for L1, we consider the same procedure:{
θ̂1, . . . , θ̂T

}
= argmax
{θ1,...,θT }

logL1 (θ1, . . . ,θT ) .

We have:

logL1 = −πT N p −N
T∑
t=1

log |Σt| − p

t=T
k=N∑
t=1
k=1

log
(
τ

(t)
k

)

−

t=T
k=N∑
t=1
k=1

q
(
Σt,x

(t)
k

)
τ

(t)
k

. (28)

Let k ∈ J1, NK, t ∈ J1, T K, solving

∂ logL1

∂τ
(t)
k

= 0 ,

yields:

τ̂
(t)
k =

1

p
q
(
Σt,x

(t)
k

)
. (29)

Let t ∈ J1, T K, by solving

∂ logL1

∂Σt
= 0p2 ,

and by plugging estimates of eq. (29), we obtain the
expression of Σ̂t given at eq. (17) that we denote Σ̂MT

t .
We have:

θ̂t =
{
τ̂

(t)
1 , . . . , τ̂

(t)
N , Σ̂MT

t

}
. (30)

Finally, the closed form of the statistic is obtained by:

Λ̂MT =
L1

(
θ̂1, . . . , θ̂T

)
L0

(
θ̂0

) H1

≷
H0

λ .

The cumbersome calculation is omitted and yields the
expression given at eq. (14).

APPENDIX B
PROOF OF PROPOSITION IV.2

Proof. The GLRT assumes computing the two following like-
lihoods:

L0 = pW1,T
(W1,T ;θ0,Φ1, . . . ,ΦT ) ,

L1 = pW1,T
(W1,T ;θ01,θT ,Φ1, . . . ,ΦT ) ,

where
θ0 = {τ1, . . . , τN ,Σ0} ,

θ01 =
{
τ

(01)
1 , . . . , τ

(01)
N ,Σ01

}
,

θT =
{
τ

(T )
1 , . . . , τ

(T )
N ,ΣT

}
,

∀t, Φt = ∅ ,

and then computing

max
{θ0,Φ1,...,ΦT }

L0 and max
{θ01,θT ,Φ1,...,ΦT }

L1 .

Using the optimisation methodology of Appendix A, θ̂0 is
the same as eq. (27), θ̂T is obtained by eq. (30) and θ̂01 is
obtained from eq. (27) where T is replaced by T − 1 in all
estimates.

Then the statistic is given by:

Λ̂marg
MT =

L1

(
θ̂01, θ̂T

)
L0

(
θ̂0

) H1

≷
H0

λ .

The cumbersome calculation is omitted and yields the
expression at eq. (16).
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APPENDIX C
PROOF OF PROPOSITION V.1

We will consider here only the proof for Σ̂MT
0 , since the

same procedure can be applied to show the property for the
others. In other words, we will show that τ̂k at eq. (24) and
Σ̂MT

0 at eq. (26) are the global maxima of the following log-
likelihood function:

logL (τ1, . . . , τN ,Σ0) =− πTNp − T N log |Σ0| −

T p

N∑
k=1

log(τk)−

t=T
k=N∑
t=1
k=1

q
(
Σ0,x

(t)
k

)
τk

.

(31)
We first recall two useful results:

Lemma 1. Any local minimum of a g-convex function over
M is a global minimum.

Lemma 2. Consider the manifold SpH and the following
geodesic:

ΣΣ0,Σ1

t = Σ
1
2
0

(
Σ
− 1

2
0 Σ1 Σ

− 1
2

0

)t
Σ

1
2
0 , t ∈ [0, 1] ,

between two points Σ0, Σ1.
Let hi ∈ Cp, a ∈ ±1, a′ ∈ ±1 for i = 1, . . .m and

Hi ∈ Cq,p for i = 1, . . . n. The function

L(Σ) = log

∣∣∣∣∣
n∑
i=1

Hi Σ
a HH

i

∣∣∣∣∣+

m∑
i′=1

hHi′ Σa′ hi′ , (32)

is strictly g-convex in Σ ∈ SpH.

When looking at the negative of function logL in eq. (31),
straightforward application of Lemma 2 allows to conclude
that it is jointly g-convex in Σ0 and for all τk:
• the g-convexity for each τk is obtained by rewriting the

negative of eq. (31) in the form of eq. (32), if we take2:

Σ = τk,

a = 1 ,

a′ = −1 ,

{hi|i ∈ J1,mK} =
{

x
(t)
k Σ

− 1
2

0 |k ∈ J1, NK, t ∈ J1, T K
}
,

Hi = τiδik.

• the g-convexity in Σ0 is obtained by rewriting the nega-
tive of eq. (31) in the form of eq. (32), if we take3:

Σ = Σ0,

a = 1 ,

a′ = −1 ,

{hi|i ∈ J1,mK} =

{
x

(t)
k√
τk
|k ∈ J1, NK, t ∈ J1, T K

}
,

Hi = δi1.

So we have the strict g-convexity, application of Lemma 1
allows us to conclude that the estimates correspond to unique
global maxima.

2Considering solely the terms involving the considered texture parameter.
3Considering solely the terms involving the covariance matrix.

APPENDIX D
PROOF OF PROPOSITION V.2

Again, we will only consider the case of Σ̂MT
0 , since the

same considerations lead to the result for the others. Up to
now we have only shown that the negative log-likelihood
− logL is g-convex. To show that it has a unique minimum
in SpH, and thus that the fixed-point equation to ΣMT

0 admits
a unique solution within the manifold, it suffices to show that
the minimum of logL occurs in the interior of SpH. To this end
we have to show that logL(Σ) → ∞ as Σ → Bound(SpH),
the boundary of SpH.

Let λ1(Σ), . . . , λp(Σ), be the ordered eigenvalues of Σ.
We can rewrite − logL as4:

T N

p∑
j=1

log λj(Σ) +

t=T
k=N∑
t=1
k=1

q
(
Σ,x

(t)
k

)
τk

.

Now, decomposing Σ as Σ =
EVD

PHDP we can write

q
(
Σ,x

(t)
k

)
as:

p∑
j=1

∣∣∣[y(t)
k ]j

∣∣∣2 /λj(Σ),

where [y
(t)
k ]j is the j-th element of y

(t)
k = PHx

(t)
k . Then we

have:

− logL(Σ) ≥

t=T
k=N
j=p∑
t=1
k=1
j=1

∣∣∣[y(t)
k ]j

∣∣∣2
λj(Σ)τk

+ T N

p∑
j=1

log λj(Σ),

Finally, Σ → Bound(SpH) if and only if λ1(Σ) → ∞ and/or
λp(Σ) → 0. Under both regimes the right-hand side of the
previous equation goes to ∞, which concludes the proof.

APPENDIX E
PROOF OF PROPOSITION VI.1

Proof. We consider separately the texture and matrix proper-
ties:
• Texture CFAR: First, Σ̂MT

0 and Σ̂MT
t are invariant by the

substitution x
(t)
k → x

(t)
k /τ

(0)
k . Then, the different(

T∑
t=1

q
(
Σ̂MT

0 ,x
(t)
k

))Tp

TTp
T∏
t=1

(
q
(
Σ̂MT
t ,x

(t)
k

))p
terms are also invariant by the same substitution. This
means that the values of

{
τ

(0)
k |k ∈ J1, NK

}
do not affect

the statistic of Λ̂MT, which is the definition of texture
CFAR property in this problem.

• Matrix CFAR: As said in the discussion of IV-A, the
estimates of matrices are subject to an indetermination

4Omitting the constants with regards to Σ0
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which is resolved by an appropriate normalisation. For
any estimate Σ̂ ∈

{
Σ̂MT

0 , Σ̂MT
1 , . . . , Σ̂MT

T

}
, when re-

placing Σ̂ by p Σ̂/Tr(Σ̂) in eq. (14), the trace terms
simplify in the expression of Λ̂MT. Thus, the statistic
is homogeneous by the normalisation constraint.
Then, the statistic is invariant for the group of transfor-
mation:

G =
{

G x
(t)
k |t ∈ J1, T K, k ∈ J1, NK, G ∈ SpH

}
.

Indeed, we can write:

Λ̂MT =

∣∣∣G Σ̂MT
0 G

∣∣∣TN
T∏
t=1

∣∣∣G Σ̂TE
t G

∣∣∣N
N∏
k=1

(
T∑
t=1

q
(
Σ̂MT

0 ,G x
(t)
k

))Tp

TTp
T∏
t=1

(
q
(
Σ̂TE
t ,G x

(t)
k

))p ,

where all terms G Σ̂MT
0 G, G Σ̂TE

t G, q
(
Σ̂MT

0 ,G x
(t)
k

)
,

q
(
Σ̂TE
t ,G x

(t)
k

)
can be written as functions of{

G x
(t)
k |t ∈ J1, T K, k ∈ J1, NK

}
.

Finally by taking G = Σ
−1/2
0 , the statistic is a

function of
{

Σ
−1/2
0 x

(t)
k |t ∈ J1, T K, k ∈ J1, NK

}
where

Σ
−1/2
0 x

(t)
k ∼ CN (0p, Ip). It follows that the statistic is

independent of Σ0 that ends the proof.
The same arguments of invariance are used for Λ̂marg

MT .

APPENDIX F
PROOF OF PROPOSITION VI.3

Proof. The texture CFAR property is done using the same
procedure as propositions VI.1 and VI.2.

The matrix CFAR property cannot be ensured due
to the trace normalisation. For any estimate Σ̂ ∈{

Σ̂TE
1 , . . . , Σ̂TE

T , Σ̂Tex
1 , . . . , Σ̂Tex

T

}
, when replacing Σ̂ by

p Σ̂/Tr(Σ̂) in eq. (20), we have:

Λ̂Tex =

T∏
t=1

∣∣∣Σ̂Tex
t

∣∣∣∣∣∣Σ̂TE
t

∣∣∣Tr(Σ̂Tex
t )

×

N∏
k=1

(
T∑
t=1

Tr(Σ̂Tex
t )q

(
Σ̂Tex
t ,x

(t)
k

))Tp

TT p
T∏
t=1

(
q
(
Σ̂TE
t ,x

(t)
k

))p .

In this expression, the trace terms do not simplify.

REFERENCES

[1] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley,
“Change detection from remotely sensed images: From pixel-based
to object-based approaches,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 80, pp. 91 – 106, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0924271613000804

[2] J. Li and E. G. Zelnio, “Target detection with synthetic aperture radar,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 2,
pp. 613–627, April 1996.

[3] L. M. Novak, “Coherent change detection for multi-polarization
SAR,” in Conference Record of the Thirty-Ninth Asilomar Conference
onSignals, Systems and Computers, 2005., Oct 2005, pp. 568–573.

[4] M. Preiss and N. J. S. Stacy, “Polarimetric SAR coherent change
detection,” in 7th European Conference on Synthetic Aperture Radar,
June 2008, pp. 1–4.

[5] J. Barber, “A generalized likelihood ratio test for coherent change
detection in polarimetric SAR,” IEEE Geoscience and Remote Sensing
Letters, vol. 12, no. 9, pp. 1873–1877, Sept 2015.

[6] A. M. Atto, E. Trouve, Y. Berthoumieu, and G. Mercier, “Multidate
divergence matrices for the analysis of SAR image time series,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 51, no. 4, pp.
1922–1938, April 2013.

[7] C. Lesniewska-Choquet, A. M. Atto, G. Mauris, and G. Mercier, “Image
change detection by possibility distribution dissemblance,” in 2017 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), July 2017,
pp. 1–6.

[8] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “Change detec-
tion in polarimetric SAR data and the complex Wishart distribution,”
in IGARSS 2001. Scanning the Present and Resolving the Future.
Proceedings. IEEE 2001 International Geoscience and Remote Sensing
Symposium (Cat. No.01CH37217), vol. 6, 2001, pp. 2628–2630 vol.6.

[9] L. M. Novak, “Change detection for multi-polarization multi-pass SAR,”
in Algorithms for Synthetic Aperture Radar Imagery XII, vol. 5808.
International Society for Optics and Photonics, 2005, pp. 234–247.

[10] V. Carotenuto, A. D. Maio, C. Clemente, and J. Soraghan, “Unstructured
versus structured GLRT for multipolarization SAR change detection,”
IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 8, pp. 1665–
1669, Aug 2015.

[11] A. D. Maio, D. Orlando, L. Pallotta, and C. Clemente, “A multifamily
GLRT for oil spill detection,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 1, pp. 63–79, Jan 2017.

[12] A. A. Nielsen, K. Conradsen, and H. Skriver, “Omnibus test for change
detection in a time sequence of polarimetric SAR data,” in 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
July 2016, pp. 3398–3401.

[13] D. Ciuonzo, V. Carotenuto, and A. D. Maio, “On multiple covariance
equality testing with application to SAR change detection,” IEEE
Transactions on Signal Processing, vol. 65, no. 19, pp. 5078–5091, Oct
2017.

[14] H. Nagao, “On some test criteria for covariance matrix,” Ann.
Statist., vol. 1, no. 4, pp. 700–709, 07 1973. [Online]. Available:
https://doi.org/10.1214/aos/1176342464

[15] J. R. Schott, “Some tests for the equality of covariance matrices,”
Journal of Statistical Planning and Inference, vol. 94, no. 1, pp. 25
– 36, 2001. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0378375800002093

[16] T. Anderson, An Introduction to Multivariate Statistical Analysis, ser.
Wiley Series in Probability and Statistics. Wiley, 2003. [Online].
Available: https://books.google.es/books?id=Cmm9QgAACAAJ

[17] P. Galeano and D. Pea, “Covariance changes detection in multivariate
time series,” Journal of Statistical Planning and Inference, vol.
137, no. 1, pp. 194 – 211, 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0378375805002673

[18] A. Aue, S. Hrmann, L. Horvth, and M. Reimherr, “Break detection
in the covariance structure of multivariate time series models,” Ann.
Statist., vol. 37, no. 6B, pp. 4046–4087, 12 2009. [Online]. Available:
https://doi.org/10.1214/09-AOS707

[19] M. S. Greco and F. Gini, “Statistical analysis of high-resolution SAR
ground clutter data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 45, no. 3, pp. 566–575, March 2007.

[20] F. Gini and M. Greco, “Covariance matrix estimation for CFAR
detection in correlated heavy tailed clutter,” Signal Process., vol. 82,
no. 12, pp. 1847–1859, Dec. 2002. [Online]. Available: http:
//dx.doi.org/10.1016/S0165-1684(02)00315-8

[21] E. Conte, A. D. Maio, and C. Galdi, “Statistical analysis of real clutter
at different range resolutions,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 40, no. 3, pp. 903–918, July 2004.

[22] K. Yao, “A Representation Theorem and its Applications to Spherically
Invariant Random Processes,” Information Theory, IEEE Transactions
on, vol. 19, pp. 600–608, September 1973.

[23] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically
symmetric distributions: Survey, new results and applications,” IEEE
Transactions on Signal Processing, vol. 60, no. 11, pp. 5597–5625, Nov
2012.



15

[24] J.-P. Ovarlez, G. Ginolhac, and A. M. Atto, “Multivariate linear time-
frequency modeling and adaptive robust target detection in highly tex-
tured monovariate SAR image,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), March 2017, pp.
4029–4033.

[25] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, “Theoretical analysis
of an improved covariance matrix estimator in non-gaussian noise,” in
Proceedings. (ICASSP ’05). IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2005., vol. 4, March 2005, pp.
iv/69–iv/72 Vol. 4.

[26] A. D. Maio, Ed., Modern Radar Detection Theory, ser. Radar, Sonar
& amp; Navigation. Institution of Engineering and Technology,
2015. [Online]. Available: http://digital-library.theiet.org/content/books/
ra/sbra509e

[27] M. Hallin and D. Paindaveine, “Optimal tests for homogeneity
of covariance, scale, and shape,” Journal of Multivariate Analysis,
vol. 100, no. 3, pp. 422 – 444, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0047259X08001474

[28] P. Formont, F. Pascal, G. Vasile, J.-P. Ovarlez, and L. Ferro-Famil,
“Statistical classification for heterogeneous polarimetric SAR images,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 3, pp.
567–576, June 2011.

[29] M. Liu, H. Zhang, and C. Wang, “Change detection in urban areas
of high-resolution polarization SAR images using heterogeneous clutter
models,” in 2011 3rd International Asia-Pacific Conference on Synthetic
Aperture Radar (APSAR), Sept 2011, pp. 1–4.

[30] A. Mian, J.-P. Ovarlez, G. Ginolhac, and A. M. Atto, “A robust change
detector for highly heterogeneous images.” 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2018, pp.
3429–3433.

[31] K. Conradsen, A. A. Nielsen, and H. Skriver, “Determining the points
of change in time series of polarimetric SAR data,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 54, no. 5, pp. 3007–3024, May
2016.

[32] G. R. Terrell, “The gradient statistic,” Computing Science and Statistics,
vol. 34, no. 34, pp. 206–215, 2002.

[33] C. Radhakrishna Rao, “Large sample tests of statistical hypotheses
concerning several parameters with applications to problems of esti-
mation,” Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 44, no. 1, p. 5057, 1948.

[34] A. Wald, “Tests of statistical hypotheses concerning several parameters
when the number of observations is large,” Transactions of the
American Mathematical Society, vol. 54, no. 3, pp. 426–482, 1943.
[Online]. Available: http://www.jstor.org/stable/1990256

[35] D. E. Tyler, “A distribution-free m-estimator of multivariate scatter,”
Ann. Statist., vol. 15, no. 1, pp. 234–251, 03 1987. [Online]. Available:
https://doi.org/10.1214/aos/1176350263

[36] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, and P. Larzabal, “Co-
variance structure maximum-likelihood estimates in compound gaussian
noise: Existence and algorithm analysis,” IEEE Transactions on Signal
Processing, vol. 56, no. 1, pp. 34–48, Jan 2008.

[37] I. Soloveychik and A. Wiesel, “Performance analysis of Tyler’s covari-
ance estimator,” IEEE Transactions on Signal Processing, vol. 63, no. 2,
pp. 418–426, Jan 2015.

[38] G. Drakovi and F. Pascal, “New properties for Tyler’s covariance matrix
estimator,” in 2016 50th Asilomar Conference on Signals, Systems and
Computers, Nov 2016, pp. 820–824.

[39] F. Pascal, P. Forster, J.-P. Ovarlez, and P. Larzabal, “Performance
analysis of covariance matrix estimates in impulsive noise,” IEEE
Transactions on Signal Processing, vol. 56, no. 6, pp. 2206–2217, June
2008.

[40] E. Ollila, J. Eriksson, and V. Koivunen, “Complex elliptically symmetric
random variables - generation, characterization, and circularity tests,”
IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 58–69, Jan
2011.

[41] A. Wiesel, “Geodesic convexity and covariance estimation,” IEEE Trans-
actions on Signal Processing, vol. 60, no. 12, pp. 6182–6189, Dec 2012.

[42] J. T. Kent and D. E. Tyler, “Maximum likelihood estimation for
the wrapped cauchy distribution,” Journal of Applied Statistics,
vol. 15, no. 2, pp. 247–254, 1988. [Online]. Available: https:
//doi.org/10.1080/02664768800000029

[43] S. M. Scarborough, L. Gorham, M. J. Minardi, U. K. Majumder,
M. G. Judge, L. Moore, L. Novak, S. Jaroszewksi, L. Spoldi, and
A. Pieramico, “A challenge problem for SAR change detection and
data compression,” pp. 7699 – 7699 – 5, 2010. [Online]. Available:
http://dx.doi.org/10.1117/12.855378

[44] V. Carotenuto, A. D. Maio, C. Clemente, J. J. Soraghan, and G. Alfano,
“Forcing scale invariance in multipolarization SAR change detection,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 1,
pp. 36–50, Jan 2016.

[45] D. Ratha, S. De, T. Celik, and A. Bhattacharya, “Change detection in
polarimetric SAR images using a geodesic distance between scattering
mechanisms,” IEEE Geoscience and Remote Sensing Letters, vol. 14,
no. 7, pp. 1066–1070, July 2017.

[46] A. D. C. Nascimento, A. C. Frery, and R. J. Cintra, “Detecting Changes
in Fully Polarimetric SAR Imagery with Statistical Information Theory,”
ArXiv e-prints, Jan. 2018.

[47] A. Mian, J.-P. Ovarlez, G. Ginolhac, and A. Atto, “Multivariate change
detection on high resolution monovariate SAR image using linear
time-frequency analysis,” in 2017 25th European Signal Processing
Conference (EUSIPCO), Aug 2017, pp. 1942–1946.


