Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Link between CBRAM Performances and Material Microscopic Properties Based on Electrical Characterization and Atomistic Simulations

Abstract : In this paper, we investigate the link between various resistive memory (RRAM) electrical characteristics: endurance, window margin (WM), and retention. For this purpose, several RRAMs are characterized using various resistive layers and bottom electrodes. By focusing on one technology and optimizing programming conditions (current, voltage, and time), we establish a tradeoff between endurance and WM. Then, by changing memory stack, we demonstrate the correlation between endurance plus window marging improvement and retention degradation. Studying this last feature from a material point of view, we analyze different oxides by density functional theory. We realize a systematic review for possible exchanges of species between resistive layer and Cu-based top electrode and study their diffusion. This provides insights on conductive filament composition in different stacks. Combining previous experiments and simulations, we propose a link between memory characteristics and material microscopic parameters, through the ion energy migration barrier. Finally, we extract how endurance, WM, and retention are correlated to material properties and electrical parameters in order to choose the suitable material for a defined application using the RRAM technology.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-grenoble-alpes.fr/hal-01929355
Contributeur : Marielle Clot <>
Soumis le : mercredi 21 novembre 2018 - 10:35:56
Dernière modification le : mardi 6 octobre 2020 - 16:30:05

Identifiants

Collections

Citation

C Nail., G Molas., P Blaise., B Sklenard., R Berthier., et al.. A Link between CBRAM Performances and Material Microscopic Properties Based on Electrical Characterization and Atomistic Simulations. IEEE Transactions on Electron Devices, Institute of Electrical and Electronics Engineers, 2017, 64 (11), pp.4479-4485. ⟨10.1109/TED.2017.2750910⟩. ⟨hal-01929355⟩

Partager

Métriques

Consultations de la notice

328