Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Robust Detection and Estimation of Change-Points in a Time Series of Multivariate Images

Abstract : In this paper, we study the problem of detecting and estimating change-points in a time series of multivariate images. We extend existent works to take into account the heterogeneity of the dataset on a spatial neighbourhood. The classic complex Gaussian assumption of the data is replaced by a complex elliptically symmetric assumption. Then a robust statistics are derived using Generalised Likelihood Ratio Test (GLRT). These statistics are coupled to an estimation strategy for one or several changes. Performance of these robust statistics have been analyzed in simulation and compared to the one associated with standard multivariate normal assumption. When the data is heterogeneous, the detection and estimation strategy yields better results with the new statistics.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.univ-grenoble-alpes.fr/hal-01840793
Contributeur : Guillaume Ginolhac <>
Soumis le : lundi 16 juillet 2018 - 16:37:15
Dernière modification le : vendredi 26 juin 2020 - 14:34:02
Archivage à long terme le : : mercredi 17 octobre 2018 - 17:00:01

Fichier

TimeSeriesEUSIPCO2018[2].pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Ammar Mian, Jean-Philippe Ovarlez, Guillaume Ginolhac, Abdourrahmane Atto. Robust Detection and Estimation of Change-Points in a Time Series of Multivariate Images. EUSIPCO 2018, EURASIP, Sep 2018, Rome, Italy. ⟨10.23919/eusipco.2018.8553285⟩. ⟨hal-01840793⟩

Partager

Métriques

Consultations de la notice

280

Téléchargements de fichiers

379