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Abstract—In this paper, we study the problem of detecting
and estimating change-points in a time series of multivariate
images. We extend existent works to take into account the
heterogeneity of the dataset on a spatial neighbourhood. The
classic complex Gaussian assumption of the data is replaced
by a complex elliptically symmetric assumption. Then a robust
statistics are derived using Generalised Likelihood Ratio Test
(GLRT). These statistics are coupled to an estimation strategy
for one or several changes. Performance of these robust statistics
have been analyzed in simulation and compared to the one
associated with standard multivariate normal assumption. When
the data is heterogeneous, the detection and estimation strategy
yields better results with the new statistics.

Index Terms—Image Time Series; Robust Change Detection;
multivariate Images; Complex Elliptically Symmetric;

I. INTRODUCTION

Recent years have seen the increase of remotely sensed
imaging systems and the number of satellite images available
have grown significantly. Missions such as Sentinel-1 or
TerraSAR-X deliver daily Synthetic Aperture Radar (SAR)
images on a global scale. In this context, analysis of Image
Time Series (ITS) for Change Detection (CD) purposes is a
growing problematic. The information about change is useful
for many applications such as environment monitoring or sea
traffic surveillance.

New systems can provide multivariate images encompassing
a certain kind of diversity. For example, Polarimetric radar
sensors record the backscattering of the scene for different
modes of polarization. For high-resolution Synthetic Aperture
Radar (SAR) images, a diversity can be found in the spectral
behaviour of the scatterers which may lead to vectors of great
size [1]. In Hyperspectral images, the size of vectors is also
large since the scene is imaged in numerous wavelengths. In
those kind of images, the heterogeneity of the data is more
apparent since the neighbourhood needed for the analysis is
wider. The present paper considers the problem of change-
point detection in ITS of such multivariate images.

CD literature is wide and many techniques have been
investigated in the past years [2]. When considering pixel-
based statistical techniques, classic schemes use a probability
model from which a statistic of decision is derived. Works
such as [3]–[5] have modeled the multivariate pixels as random
Gaussian vectors and derived statistics of decision for bi-date
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CD as a test of covariance matrix equality. Recently, [6], [7]
have considered and explored the problem of testing ITS. [8]
proposed a method to estimate the point of change in such
series using a Gaussian model.

However, when considering highly heterogeneous images
such as high-resolution SAR images, it has been shown
that the Gaussian assumption reflects poorly the distribution
observed [9], [10]. In those contexts, the Complex Elliptically
Symmetric (denoted CE) family of distributions has been
proposed to model the dataset and solid results have been
obtained in many applications. The Complex Angular
Elliptical (denoted CAE) family, which is strongly linked to
the CE distributions [11], is of interest in the present paper.
CD under non-Gaussian context has been explored in [12]
where a similarity measure has been proposed under a bi-date
framework. Recently, a Generalized Likelihood Ratio Test
(GLRT) for similar distributions has been proposed by the
present authors for bi-date CD in [13].

In this paper, we consider the problem of change-points
detection in an ITS under CE distributions assumption. We
propose to adapt the methodology of [8] to this non-Gaussian
context and derive the necessary statistics under the new for-
mulation of the problem. We first remind the methodology of
detection estimation and the statistics under Gaussian model.
Then we derive the new robust statistics by means of GLRT.
Finally, we test the algorithm of detection and estimation with
the new statistics in simulation and conclude.

II. THE DETECTION AND ESTIMATION ALGORITHM

A. Definitions and Problem
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Fig. 1. Illustration of spatial neighbourhood (N = 9). The gray zone
corresponds to the local observations at each date.



Assume we have T multivariate images of the same scene
at different dates. We define T = {1 . . . T}, p the size of
the vectors and N the number of local observations (pixels)
{x(t)

k , k = 1 . . . N} at a given date t.
On this local neighbourhood, we model the pixels as the

realization of a random variable x with a probability density
function (PDF) px(x; θ), where θ is a parameter of the PDF.

Under classic schemes, the Gaussian hypothesis has been
privileged to model the data px(x; θ) = pCNx (x; Σ) where Σ
is the covariance matrix of the data and sole parameter of the
distribution since the mean is assumed to be null.

The problem considered presently is the following:
Consider a Time Series of random vectors x(t) ∼ px(x; θ(t));
given N independent observations {x(t)

k }k=1...N , find all tC ∈
T\{1} so that θ(tC−1) 6= θ(tC). The number of total changes
is unknown.

For simplification, the notation θ(t)
∆
= θt will be used

henceforth.

B. Detection problem: Binary Hypothesis testing

The first step consist in detecting the presence of a change in
the time series. If the series is stationary, we assume that there
is no change-point to be estimated. The so-called omnibus
test scheme is intended to chose between the two following
hypotheses:

Let (t1, t2) ∈ T2, so that t2 > t1,{
Ht1,t2

0,omni : θt1 = . . . = θt2 = θt1,t2
Ht1,t2

1,omni : ∃(t, t′) ∈ {t1, . . . , t2}2, θt 6= θt′

(1)

An appropriate statistic of the observations must be used to
choose between the two hypotheses. Under Gaussian assump-
tion (θt = Σt), several statistics have been derived for this
problem [14]–[16]. A comparative study can be found in [7].
We remind here the statistic obtained by using the GLRT of
the problem:

Λ̂t1,t2CN ,omni =

∣∣∣∣∣
t2∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1)N

t2∏
t=t1

∣∣∣Σ̂t

∣∣∣N
H1

≷
H0

λ, (2)

where ∀t, Σ̂t = 1/N
∑N
k=1

(
x

(t)
k x

(t)
k

H
)

are the sample

covariance matrices for each date, |•| is the determinant
operator and λ is a threshold of detection.

C. Estimation Strategy

The scheme 1 allows to determine if there is one or more
change. In case of a positive test, the location of the changes
in the time series is to be estimated. To this end, successive
bi-date detections scheme can be implemented:

∀t ∈ T \ {1},
{

Ht
0,bi−date : θt−1 = θt = θt−1,t

Ht
1,bi−date : θt−1 6= θt

(3)

However, this scheme exploits at most the data of two
successive dates which is sub-optimal. An alternative scheme
proposed in [8] is to consider successively the following
marginal hypotheses:

Consider (t1, t2) ∈ T2, so that t2 > t1,{
Ht1,t2

0,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 = θt2
Ht1,t2

1,marg : θt1 = . . . = θt2−1 = θt1,t2−1 and θt2−1 6= θt2
(4)

The GLRT for these hypotheses under CN assumption has
been derived as well:

Λ̂t1,t2CN ,marg =

∣∣∣∣∣
t2∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1)N

∣∣∣∣∣Σ̂t2

∣∣∣∣∣
N ∣∣∣∣∣

t2−1∑
t=t1

Σ̂t

∣∣∣∣∣
(t2−t1−1)N

H1

≷
H0

λ. (5)

D. The algorithm
Both detection and estimation can be done jointly using

problems (1) and (4). [8] has proposed the following algo-
rithm:

Algorithm 1 Change-Point Detection and Estimation
1: Initialize t1 ← 1
2: while Ht1,T

1,omni do . Omnibus test
3: Initialize r ← 1
4: while Ht1,t1+r

0,marg do . Successive marginal tests
5: Update r ← r + 1
6: end while
7: Store t1 + r − 1 as a change point
8: Update t1 ← t1 + r
9: end while

The presented algorithm allows to detect several change
points by first detecting a global change in the series and
then refining the detection by iterating on the number of dates
processed.

One key-point in the algorithm is the fact that statistics (2)
and (5) have the Constant False Alarm (CFAR) property which
means that their distribution is independent of the covariance
matrix of the input data. In practice, this allows to select a
threshold to guarantee a PFA independently of the images of
consideration. Hence, the strength of this method lies in the
possibility to select a PFA and the fact that the number of
changes is not required to be known a priori.

When considering heterogenuous images, the Gaussian as-
sumption is not realistic [10]. In this context, (2) and (5) are
not optimal for detection. We propose in the next section to
derive new statistics which are designed under more robust
CE model.

III. EXTENSION TO NON-GAUSSIAN CASE

A. CE and CAE distributions
A thorough description of CE family can be found in [11].

We remind the PDF for any vector x ∈ Cp:

pCEx (x; Σ, g) = Cp,g|Σ|−1
g
(
xHΣ−1x

)
, (6)



where Σ ∈ SpH is a positive definite Hermitian matrix called
the scatter matrix, and g : R+ → R+ is a function called
density generator that satisfies regularity conditions. Cp,g is a
normalization constraint ensuring that

∫
Cp p

CE
x (x)dx = 1.

Under this assumption, we consider the problems (1),
(3) and (4) with θt = {gt,Σt}. However, the derivation is
impossible when the density generators gt are unknown.

To address this problem, we consider the self-normalized
observations. Let x ∼ CE(0p, g,Σ) and define z = x

‖x‖2 . The
self-normalized vector z is has a Complex Angular Elliptical
distribution which is denoted as CAE(0p,Σ

′) [11], [17]. Since
the normalized observations are systematically on the unit
sphere of dimension p denoted CSp, they do not depend on
the density generators and their PDF are fully known:

pCAEz (z; Σ′) = Sp
−1|Σ′|−1

(
zHΣ′

−1
z
)−p

, (7)

where Sp = 2πp/Γ(p) and Γ is the gamma function. As
for the Gaussian case, the only parameter to consider is the
scatter matrix. The derivation of statistics for problems (1) and
(4) are done using θt = {Σ′t} and the PDF (7).

B. Omnibus Detection Test

Let us define, ∀k, ∀t, z
(t)
k = x

(t)
k /‖x(t)

k ‖2. To solve problem
(1), we consider the following GLRT:

Λ̂t1,t2CAE,omni =

max
{Σt1

,...,Σt2
}

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt)

max
{Σt1,t2

}

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

(8)

We treat both optimizations separately:
• First, let us consider the numerator. We have to maximize:

L =

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt)

∝
t2∏
t=t1

(
|Σt|−N

N∏
k=1

(
z

(t)
k

H
[Σt]

−1
z

(t)
k

)−p)
.

The optimization is performed by solving separately for
each {Σt}t∈{t1,...,t2}. The obtained solution is the well-
known Tyler’s estimator:

∀t, Σ̂TE
t =

p

N

N∑
k=1

z
(t)
k z

(t)
k

H

z
(t)
k

H
[Σ̂TE

t ]
−1

z
(t)
k

. (9)

• Now, let us consider the denominator. We have to maxi-
mize:

L =

t2∏
t=t1

N∏
k=1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

∝
t2∏
t=t1

(
|Σt1,t2 |

−N
N∏
k=1

(
z

(t)
k

H
[Σt1,t2 ]

−1
z

(t)
k

)−p)
.

Optimizing L towards Σt1,t2 leads to:

Σ̂TE
t1,t2 =

p

(t2 − t1)N

N∑
k=1

t2∑
t=t1

z
(t)
k z

(t)
k

H

z
(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

. (10)

By replacing the estimates (9) and (10) in eq. (8) and we
obtain the final statistic:

Λ̂t1,t2CAE,omni =

∣∣∣Σ̂TE
t1,t2

∣∣∣(t2−t1)N

t2∏
t=t1

∣∣∣Σ̂TE
t

∣∣∣N
t2∏
t=t1

N∏
k=1

(
z

(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

)p
(

z
(t)
k

H
[Σ̂TE

t ]
−1

z
(t)
k

)p .
(11)

C. Marginal Detection Test

The GLRT statistic for the problem (4) is given by:

Λ̂t1,t2CAE,marg =

max
{Σt1,t2−1,Σt2}

N∏
k=1

(
t2−1∏
t=t1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2−1)

)
pCAE
z
(t2)

k

(z
(t2)
k ; Σt2)

max
{Σt1,t2

}

N∏
k=1

t2∏
t=t1

pCAE
z
(t)
k

(z
(t)
k ; Σt1,t2)

(12)
The derivation is similar to those of the omnibus test and

yields:

Λ̂t1,t2CAE,marg =

∣∣∣Σ̂TE
t1,t2

∣∣∣(t2−t1)N

∣∣∣Σ̂TE
t2

∣∣∣N ∣∣∣Σ̂TE
t1,t2−1

∣∣∣(t2−t1−1)N
×

N∏
k=1

t2∏
t=t1

(
z

(t)
k

H
[Σ̂TE

t1,t2 ]
−1

z
(t)
k

)p
(
t2−1∏
t=t1

(
z

(t)
k

H
[Σ̂TE

t1,t2−1]
−1

z
(t)
k

)p)(
z

(t2)
k

H
[Σ̂TE

t2 ]
−1

z
(t2)
k

)p ,
(13)

where the estimates have been given in eq. (9) and (10).

D. Properties of the new statistics

As for (2) and (5) statistics, the new statistics (11) and
(13) have the matrix CFAR property. The proof is omitted,
but is straightforward from the one presented in [13]. The
improvement comes from the fact that the new statistics
are independent of the density generator which makes them
more robust. This property is often referred as texture CFAR
property.

The analytic distribution of both Λ̂t1,t2CAE,omni and Λ̂t1,t2CAE,marg

under H0 is unfortunately unknown. The problem will be
considered in future developments. The selection of thresholds
is done by obtaining the PFA vs threshold of detection (a.k.a
PFA − λ) curve by means of Monte-Carlo (M-C) Trials.
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Fig. 2. Example of detection/estimation on synthetic images. T = 5, p = 3, N = 25, PFA = 10−4. The background has parameters α = 0.3, β = 0.1, ρ =
0.99. For the cross pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.3 and the circle pattern: α = 0.3, β = 1, SNR = 10 dB, ρ = 0.2.

TABLE I
SIMULATION-RELEVANT PARAMETERS

α, β ρt p N T

Shape and Scale
for Γ-distribution

Coefficients for
Toeplitz matrices

Size of
vector

Number of
observations

Number of
Images

IV. SIMULATIONS

A. Description of simulation

The new statistics have been tested in simulation and
compared to the Gaussian ones. Complex Compound Gaus-
sian (CCG) random vectors, which is sub-family of the CE
distributions, have been considered. They are random vectors
used are of the form x =

√
τ x̃ where τ is a random

monovariate variable with a given PDF, referred as the texture,
and x̃ ∼ CN (0p,Σ). We choose τ ∼ Γ(α, β), where Γ(α, β)
denotes the Gamma distribution with shape parameter α and
scale parameter β.

The covariance matrices are chosen to be Toeplitz of the
form Σt(m,n) = ρ

|m−n|
t . ρt is the sole parameter governing

the change over time.
Table I summarizes the relevant parameters for the simula-

tions presented hereafter.

B. False alarm regulation

We first consider the regulation of false alarms for both
robust omnibus and marginal detectors and compare them to
the Gaussian one. To this end, synthetic images have been
made where the background is a CCG noise. A cross-shaped
pattern appear, moves and disappear while a circle grows
over time. The patterns correspond to realisation of CCG
vectors where the covariance matrix is different than for the
background. The parameter β has been used to fix the Signal

to Noise Ratio (SNR) of the patterns. The figure 2 present the
different images of the series and the result of detection and
estimation using algorithm 1 with both Gaussian and robust
statistics. A white point on the resulting image t and position
(x, y) correspond to a point that has been detected as a change
in the time series at position (x, y) and estimated to be at time
t. The thresholds have been chosen to guarantee a PFA = 10−4

using theoretical relationship for Gaussian statistics (given in
[8] for example) while M-C trials have been used for the robust
one. Results show that for Gaussian statistics, the PFA chosen is
not respected: a significant number of false alarms are present.
Results with robust statistics show that the number of false
alarms is greatly reduced. This result is expected since the
Gaussian statistics do not account for the nature of the data.
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Fig. 3. PFA−λ relationships for several parameters of the CCG distribution.

Next, PFA−λ curves have been computed, by means of M-
C trials, at Figure 3. The figure show the curves for Gaussian



model and CCG one with several parameters for the texture.
We observe that the curves are not the same for the Gaussian
statistics while for robust statistics, the curves are the same.
This result confirms the texture CFAR property of the robust
statistics.

C. Probability of detection
To compare the performance of detection of Gaussian and

robust schemes, we choose to compute the probability of
detection at the good date PD, through means of M-C trials,
on a simple situation where there is only one change at a date
tC . Before the change, we choose ρt<tC = 0.01 and after the
change several values have been used. Both Gaussian and CCG
models have been simulated and the expetimental thresholds,
for the given noise, have been chosen for the PFA selected. The
Bartlett distance [18] on covariance matrices has been used as
a measure of the amplitude of the change:

dB(Σ1,Σ2) = log(
|Σ1 + Σ2|2

|Σ1| |Σ2|
)− 2p log(2). (14)

The results, presented at Figure 4, have also been compared
to the bi-date scheme presented at eq. (3).
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Fig. 4. Probability of detection versus Bartlett distance.

When the data follows a Gaussian distribution, we notice
that the performance is lower for the robust statistics in
comparison to the Gaussian ones. The plot also shows that
even for a single change, the algorithm 1 performs better than
the bi-date one. When the data follows a CCG distribution, the
performances are the same for the robust statistics while the
performances strongly decrease with Gaussian statistics.

V. CONCLUSION

The present paper has studied the problem of change-
point detection in a series of multivariate images under non-
Gaussian assumption. An extension of [8] to CE family
has been proposed and studied in simulation. The proposed
detector yields a robust behaviour for a large family of dis-
tributions. Future works concern the performance analysis of
this methodology on real experimental data such as Sentinel-1
SAR images.
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