Estimateur de Tyler régularisé dans le cas sous-déterminé. Application à la détection d'objets enfouis - Université Grenoble Alpes Access content directly
Conference Papers Year :

Estimateur de Tyler régularisé dans le cas sous-déterminé. Application à la détection d'objets enfouis

Abstract

Among the various covariance matrix estimators, the regularised Tyler estimator performs independently from the data distribution and is robust to data outlier corruption. However, the shrinkage parameter value selection depends on the target application and data configuration, and have a direct influence on the estimator performance results. Thus finding a generic rule optimal for every criterion is not straightforward. This paper proposes a new regularistaion parameter selection based on a subspace approach. The performances of this method are investigated both in simulation and application to the adaptive buried objects detection problem.
Fichier principal
Vignette du fichier
reg_tyler.pdf (1.06 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01617064 , version 1 (16-10-2017)

Identifiers

  • HAL Id : hal-01617064 , version 1

Cite

Quentin Hoarau, Arnaud Breloy, Guillaume Ginolhac, Abdourrahmane Atto, Jean-Marie Nicolas. Estimateur de Tyler régularisé dans le cas sous-déterminé. Application à la détection d'objets enfouis. GRETSI 2017, Sep 2017, Juan Les Pins, France. ⟨hal-01617064⟩
103 View
102 Download

Share

Gmail Facebook Twitter LinkedIn More