On the growth behaviour of Hironaka quotients - Université Grenoble Alpes
Article Dans Une Revue Journal of Singularities Année : 2020

On the growth behaviour of Hironaka quotients

Hélène Maugendre
  • Fonction : Auteur
  • PersonId : 1012261

Résumé

We consider a finite analytic morphism φ = (f, g) : (X, p) −→ (C 2 , 0) where (X, p) is a complex analytic normal surface germ and f and g are complex analytic function germs. Let π : (Y, E Y) → (X, p) be a good resolution of φ with exceptional divisor E Y = π −1 (p). We denote G(Y) the dual graph of the resolution π. We study the behaviour of the Hironaka quotients of (f, g) associated to the vertices of G(Y). We show that there exists maximal oriented arcs in G(Y) along which the Hironaka quotients of (f, g) strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.
Fichier principal
Vignette du fichier
quot20.pdf (338.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01558451 , version 1 (07-07-2017)
hal-01558451 , version 2 (06-07-2020)

Identifiants

Citer

Hélène Maugendre, Françoise Michel. On the growth behaviour of Hironaka quotients. Journal of Singularities, 2020, 20, p. 31-53. ⟨10.5427/jsing.2020.20b⟩. ⟨hal-01558451v2⟩
210 Consultations
183 Téléchargements

Altmetric

Partager

More