Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Robust Adaptive Detection of Buried Pipes using GPR

Abstract : The Ground Penetrating Radar (GPR) consists in an electromagnetic signal which is transmitted at different positions through the ground in order to obtain an image of the subsoil. In particular, the GPR is used to detect buried objects like pipes. Their detection and localisation are intricate for three main reasons. First, the noise is important in the resulting image due to the presence of several rocks and/or layers. Second, the wave speed and the response of the pipe depend on the characteristics of the different layers. Finally, the signal attenuation could be important because of the depth of pipes. In this paper, we propose to derive an adaptive detector where the steering vector is parametrised by the wave speed in the ground and the noise follows a Spherically Invariant Random Vector (SIRV) distribution in order to obtain a robust detector. To estimate the covariance matrix, we propose to use robust maximum likelihood-type estimators called M-estimators. To handle the large size of data, we consider regularised versions of such M-estimators. Simulations will allow to estimate the relation Probability of False Alarm (PFA)-Threshold. Application on real datasets will show the relevancy of the proposed analysis for detecting buried objects like pipes.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger
Contributeur : Guillaume Ginolhac <>
Soumis le : lundi 30 mai 2016 - 14:36:45
Dernière modification le : mercredi 14 avril 2021 - 03:37:08
Archivage à long terme le : : mercredi 31 août 2016 - 10:47:49


Fichiers produits par l'(les) auteur(s)



Q Hoarau, G Ginolhac, A Atto, Jean-Marie Nicolas, Jean-Philippe Ovarlez. Robust Adaptive Detection of Buried Pipes using GPR. 24th European Signal Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary. ⟨10.1109/EUSIPCO.2016.7760305⟩. ⟨hal-01323391⟩



Consultations de la notice


Téléchargements de fichiers