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Abstract—The Ground Penetrating Radar (GPR) consists in an
electromagnetic signal which is transmitted at different positions
through the ground in order to obtain an image of the subsoil.
In particular, the GPR is used to detect buried objects like
pipes. Their detection and localisation are intricate for three main
reasons. First, the noise is important in the resulting image due
to the presence of several rocks and/or layers. Second, the wave
speed and the response of the pipe depend on the characteristics
of the different layers. Finally, the signal attenuation could
be important because of the depth of pipes. In this paper,
we propose to derive an adaptive detector where the steering
vector is parametrised by the wave speed in the ground and
the noise follows a Spherically Invariant Random Vector (SIRV)
distribution in order to obtain a robust detector. To estimate the
covariance matrix, we propose to use robust maximum likelihood-
type estimators called M-estimators. To handle the large size
of data, we consider regularised versions of such M-estimators.
Simulations will allow to estimate the relation Probability of False
Alarm (PFA)-Threshold. Application on real datasets will show
the relevancy of the proposed analysis for detecting buried objects
like pipes.

I. INTRODUCTION

Ground Penetrating Radar (GPR) imaging involves transmit-
ting an electromagnetic wave at several spatial positions and
receiving subsoil retro-diffusion waves to form images [1], [2].
In particular, GPR can be used to detect buried objects like
landmine, pipes,... Most of GPR acquisition devices transmit
a simple Ricker wavelet of small duration leading to a large
bandwidth. In most applications, the GPR is composed of a
monostatic antenna with a given sub-aperture, though more
complex radar systems can be used. In this paper, we will
consider a monostatic Radar system which transmits a Ricker
wavelet. Several papers are devoted to landmine detection,
another type of buried objects close to the ground level,
leading to a poor SNR scenario, but with high object response.
For this, a Kalman filter based technique has been used in [3],
later improved using a particle filter in [4]. For deeper objects
(like pipes), new strategies need to be found. In this paper,
we propose a new approach built from the Synthetic Aperture
Radar [5] configuration where the raw data is also composed
of several hyperbola which are the responses of all scatterers
located in the ground, coherently combined to form an image
of the ground. But in SAR the speed of the electromagnetic
wave is known whereas in GPR applications, the wave speed
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is unknown as multiple ground layers could be present and be
located between the radar and the buried objects. The problem
of subsurface layers is also encountered in the domain of
Through-the-Wall SAR [6] where the clutter can be removed
for example by a subspace projection [7]. This last method
could be deficient in our case as the subspace operation
removes part of the hyperbola and thus affects the response
of the buried pipe.

For the derivation of the method, we use the radar detec-
tion/estimation framework initially given in [8]. The proposed
detector depends on the response of the buried pipe, denoted
by analogy with the SAR the steering vector [9]. This steering
vector is built from the theoretical hyperbolas and the known
transmitted signal. It is parametrised by the position in the
subsoil and the dielectric constant which are unknown. We
consider that a noise corrupts the received signal, which is a
combination of electronic noise, clutter, and also small buried
objects like rocks. If we consider that the noise is modeled
by a multivariate Gaussian vector of zero mean and of an un-
known covariance matrix, we can derive the corresponding "2-
Step" Generalised Likelihood Ratio Test (GLRT) [10] called
Adaptive Normalised Matched Filter (ANMF). Unfortunately,
the Gaussian distribution seems to be not adequate in this
configuration: the clutter or the presence of small objects,
denoted in the following outliers, tends to create signals with
strong heterogeneity. In this case, the Gaussian distribution
is not adapted and family of statistical distributions is better
suited for this kind of modeling, the Real Elliptic Symmetric
(RES) [11] or a sub-family of RES, the Spherical Invariant
Random Vector (SIRV) [12]. When the statistic of the SIRV
texture is not known but considered as unknown deterministic
parameter, the MLE of the covariance matrix is found to be
the Tyler’s estimator [13]. This estimator is well-known to
be robust to strong heterogeneity and outliers but a recent
paper [14] shows that it could be suffering from bad estimation
for some specific outliers. The authors recommend to use
another estimate of the covariance matrix in the family of
the M-estimators [15], [11]: the Huber’s estimator [16], [17],
[18] which is the combination of the SCM and the Tyler’s
estimator. In this paper, we will compare the detectors built
from SCM and Huber’s estimators.

A major problem in adaptive detection comes from the
estimation of the covariance matrix, which needs a set of



K independent and identically distributed (i.i.d.) signal-free
secondary data, and for correct estimation a good choice
consists usually in choosing K = 2N where N is the tested
data size [19]. However, in our configuration, the data size
is really high and it is impossible to have a sufficient set
of secondary data. Strategies exist to reduce the required
amount of secondary data. In most cases, the covariance
matrix is known to have a particular structure which allows to
reduce the number of estimated parameters [20], [21]. But the
most common approach is to regularise the estimation: this
introduces a bias but could lead to great performances even if
for small set of secondary data. The drawback is the choice
of the regularisation parameter. For the SCM, a strategy is
proposed in [22], and adapted to array processing in [23]. For
Huber’s estimator, the existence has been proven in [24], but
no criteria has been defined to estimate the optimal value. We
propose here to estimate it by choosing the value ensuring the
most stable false alarm rate versus data heterogeneity. This
analysis will be performed by means of simulations.

To summarise, we propose in this paper the derivation of
a robust adaptive detector in order to detect buried pipes in
presence of subsurface layers and outliers, while using a small
set of secondary data. The corresponding detector will be
tested on simulated data and real data.

The following convention is adopted: italic indicates a
scalar quantity, lower case boldface indicates a vector quantity,
and upper case boldface a matrix. Notation T denotes the
transposition operator. E [ ] is the expected value operator.
N(a,M) is a real Gaussian vector with mean a and covariance
matrix M. The N × N -identity matrix is denoted IN . [A]ij
is the element of matrix A at line i, column j.

II. SIGNAL MODELING

A. GPR Signal modeling

In a general configuration, we consider a GPR moving along
a u-axis, parallel to the ground (y-axis) and at a height h
from it. At every position um, m ∈ [[1,M ]], the radar emits a
signal e(t) in the ground. This signal is reflected by ground
scatterers characterized by their reflection coefficients ap ∈
[−1, 1] where p ∈ [[1, P ]]. The echo of the signal received by
the radar at position um is:

rm(t) =

P∑
p=1

ape (t− τm(yp, zp, ε
′)) , (1)

where τm is the time taken by the signal to travel from
the radar to the scatterer and back, and depends on the
value of the permittivity ε′. In the following, we consider a
monolayer ground model for the computation of τm, though
more complex models can be used if needed.

GPR systems return digital data, we thus consider that the
imaged scene is divided into P = Ny×Nz pixels each consid-
ered as a potential scatterer, and observe the received signals
over discrete time samples ti, i ∈ [[1;NT ]]. We create a vector
a = [a1, . . . , ap, . . . , aP ]T containing all the coefficients
arranged in lexicographic order, and build a set of M matrices

Fig. 1: Sampling process for the vector x: red lines represent the samples
along the different columns of the image, which are then assembled in the
vector x.

Hm ∈ RNT×P , with [Hm]ip = e(ti−τm(yp, zp)). We express
the sampled version of the received signal rm by the radar at
position um as rm = Hm a. Then, by concatenating all the
M matrices Hm into H =

[
HT

1 . . . HT
M

]T
, and the M

vectors rm into r = [rT1 . . . rTM ]T , we get the full GPR
B-scan image modeling:

r = H a . (2)

B. Detection problem

Because the GPR antenna emits in a wide beam pattern,
buried objects appear as hyperbolic shapes on the scan image.
Thus, trying to detect a buried pipe equivalent to checking the
presence of a reflection hyperbola around the sampled position.
To do so, we sample the pixels around the position (y, z) while
following the shape of the hyperbola as summarised in fig. 1.

This sampling can be formalised in matrix form. From the
signal r, the signal xε′,y,z ∈ RN to be tested is extracted
by means of a selection matrix unique to each position (y, z)
Tε′,y,z ∈ {0; 1}N×MNT , where N is the number of samples
in the vector xε′,y,z . This matrix is built as follows: if the ith

component of the tested vector x is set to be the jth component
of r then [Tε′,y,z]ij = 1, and if not [Tε′,y,z]ij = 0.

xε′,y,z = Tε′,y,z r . (3)

This signal xε′,y,z is then tested under two hypotheses:
either it contains only noise n, or it contains the sum of a set
pattern p, characterized by a steering vector with amplitude
aε′,y,z and additive noise n. The steering vector p represents
the ideal theoretical reflection hyperbola. The detection prob-
lem is expressed as:{

H0 : xε′,y,z = n
H1 : xε′,y,z = aε′,y,zp + n

. (4)

In the following, in order to simplify notations, we will denote
x = xε′,y,z and a = aε′,y,z .

Along with the vector x we sample a set of secondary data
{xk}1,K following the same fashion, for positions located at
the same depth z as x, while respecting a safe zone along the
y-axis to prevent any signal being inadvertently sampled in
this secondary set. It will be used in later sections to estimate
the noise n characteristics.



C. Noise modeling

To derive the detector corresponding to the solution of
problem (4), we have to propose a model for the noise
n,nk ∈ RN . Here, we will consider two cases: partially
homogeneous Gaussian and SIRV noise to take into account
the heterogeneity of the data.

Partially homogeneous Gaussian modeling: In this case,
the noise n follows a zero-mean Gaussian process N (0,R)
where R is the covariance matrix. We assume that this
covariance matrix is unknown. Moreover we assume that the
secondary data {xk}1,K follow a zero-mean Gaussian process
N (0, σR) where R is the same covariance matrix and where
σ is an unknown deterministic parameter. This last parameter
allows to take into account different powers between the data
under test and the secondary data. Nevertheless, this assumes
that the power for all secondary data is the same which is not
realistic in many applications. Therefore, we propose in the
following paragraph another kind of modeling.

SIRV modeling: We consider that the powers associated
to each xk and the data under test are different. In such a
situation, it is common to model this power variation of clutter
by a SIRV [25], a non-homogeneous Gaussian random vector
with random power. The SIRVs [12] n, nk are respectively
the product of positive scalar random variables κ, κk, called
the texture, and N -dimensional vectors g, gk which follow
independent Gaussian process N (0,R): n =

√
κg and nk =√

κkgk. In the following, for identifiability issue in the SIRV
case, we consider Tr(R) = N .

III. DETECTION

To derive the detector of the detection problem (4), we
can resort to the GLRT framework. When the covariance
matrix is assumed to be known, the derivation of the LRT
leads to the same detector for both Gaussian and SIRV
noise models [26][27][28], here parametrised by the dielectric
constant ε′, which is then compared to a threshold to decide
between hypotheses H1 or H0:

Λ = max
ε′∈R+

|pTR−1x|2

(pTR−1p)(xTR−1x)

H0

≶
H1

η . (5)

In this section, we present different estimators of the co-
variance matrix. The problem is that the number of secondary
data available K will be inferior to the size data N causing the
inversion in (5) to be inconsistent. Therefore, it is necessary
to develop a strategy to propose an efficient estimator using
a small support of secondary data. Since, we do not assume
any structure (low-rank, Toeplitz) for the covariance matrix,
we propose here to use shrinkage estimators of the covariance
matrix which have known a great interest these last years in the
signal processing community. First, we consider the Gaussian
case, then the SIRV case.

a) Gaussian case: In this case, the most effective method
is to replace the true covariance matrix by its Maximum
Likelihood Estimators (MLE), the Sample Covariance Matrix

(SCM). In the under-sampled case, the seminal paper [22]
proposes the following estimator:

R̃ = β
1

K

K∑
k=1

xkx
T
k + αIN , (6)

where β and α have to be estimated. Optimal values are given
in [23].

b) SIRV case: In the over sampled case (K > N ), a well-
known and efficient estimate of the covariance matrix (MLE
for deterministic texture) is the Tyler’s estimator. It is known
to be robust to the statistic of the noise and the presence of out-
liers in the secondary data. Nevertheless, in a recent paper [14],
the authors prove that the Tyler’s estimator could be suffering
of data contamination for some specific configurations. In that
case, one can resort to M-estimators [15][16][11] and use, for
example, the Huber’s estimator. As for the Gaussian case, we
can build an under-sampled version of this estimator [24]:

R̂ =
1

K

K∑
k=1

u
(
xTk R̂

−1xk

)
xkx

T
k + α IN , (7)

where u(t) =

{
1, for t ≤ c2
c2/t, for t > c2

and where c > 0 can

be set from the percentage of data considered as Gaussian
distributed. Iterations associated to this fixed point equation
allow, for any α and for any initial value R̂0 [24] to reach
the unique solution. For the best of our knowledge, we do not
know any paper which proposes an optimal value for α.

IV. SIMULATIONS

It is useful to know the distribution of the detector with
a particular covariance matrix estimator in order to set the
threshold η for a given PFA level. Unfortunately, this dis-
tribution is difficult to obtain when regularised estimators of
the covariance matrix are used in the ANMF. Therefore, we
propose to estimate the relation PFA-threshold by means of
Monte Carlo trials for the ANMF built from the SCM and
Huber’s estimator. Moreover, we will estimate the optimal
regularisation parameter value for Huber’s estimator by finding
the value that keeps a constant false alarm behaviour as a
function of data heterogeneity.

A. Statistical simulations

We consider the SCM and Huber’s adaptive detector: Λ̂SCM
and Λ̂Hub, built by replacing the true covariance matrix in
the NMF of (5) by the regularised version of the estimators.
The simulation consists in Monte-Carlo trials, to estimate
the PFA as a function of noise heterogeneity and threshold
value. It was set up with a SIRV noise, the Gaussian vectors
g, gk ∼ N (0,R) where [R]ij = ρ|i−j| is a Toeplitz covari-
ance matrix of parameter ρ = 0.9 and where the texture is
Gamma-distributed of shape parameter ν and scale parameter
1/ν, with ν = 2 is leading to a near-Gaussian noise and
ν = 0.1 is leading to a more impulsive noise.

Fig. 2a shows the PFA versus ν curves for Huber’s estimator
with varying α values. Low α values appear to give the most



(a) (b)

Fig. 2: (a) Huber’s estimator PFA versus ν for varying alpha values given for threshold value η = −15dB, (b) PFA versus threshold for all estimators
for ν = 2 and ν = 0.1. Parameters are N = 153 (corresponding 51 sampled columns with 3 samples per column), K = 40, and results are averaged over
100000 Monte-Carlo trials.

(a) (b)

(c) (d)

Fig. 3: Adaptive detector applied to real data using the ANMF. Approximate pipes locations are indicated by red squares. (a) Original image (Pipes indicated
by red squares) (b) White Noise hypothesis (c) SCM (d) Huber (α = 0.05). N = 153, K = 40.

stable PFA values across the texture parameter range. Fig. 2b
shows the PFA versus threshold graphs for Huber’s estimator
with α = 0.05 and the SCM with optimal α and β values
from [23], along with both limit case Oracle (R̂ = R) and
White noise (R̂ = IN ), for ν = 0.1 and ν = 2. In the near-
Gaussian case, the estimators achieve similar results, and the

Huber’s detector gives better PFA levels in the more impulsive
case. Also we can observe that Huber’s regularised detector
has a more stable constant false alarm rate behaviour than the
SCM.

One must note that having the lowest PFA values does not
guarantee the best detection result. This should be observed



with the proper set of simulations, such as observing the
Probability of Detection as a function of the SNR, which have
not been conducted here due to lack of space.

B. Application on real data

In this section we apply the two regularised detectors,
SCM and Huber’s, as well as the white noise limit case
(R = IN ) to real data. The image (fig. 3a) has M = 225
radar positions and NT = 512 time samples per position
with a sampling frequency of 20 GHz, and is reconstructed
with Nx = M and Ny = NT pixels. It contains five pipes,
two with strong reflections and three secondary pipes with
lower response levels, and a layer interface reflection visible
between 5 and 10 ns. The emitted signal is a Ricker wavelet of
peak frequency 500 MHz. The permittivity value is comprised
between 3 and 15, with four possible values: 3, 5, 10, and 15.
Other parameters are kept identical to the previous statistical
simulation.

The tests on fig. 3 reveal good overall results from all
detectors. On the image, one secondary pipe is enhanced by
the detectors, and the two others are still weak and close to
noise level. Result image similarities indicate that the noise
model is closer to Gaussian than impulsive. In comparison to
the white noise hypothesis, both detectors greatly succeed in
removing the layer interface response in the top part of the
image, proving the relevancy of the adaptive approach, and
confirming that a pre-processing of the images is not necessary
for the adaptive detection approach. This is a good thing, as
such techniques could be partially destructive to the signals of
interest by removing the top part of the reflection hyperbolas.
Huber’s detector has a loss of performance at the bottom of
the image, which is due to the image being padded with zeros.
This issue may be solved using another regularisation model.
Finally, the mean estimated permittivity value for the three
detectors in this image is ε′ = 5.

V. CONCLUSION

In this paper, we developed a robust adaptive detector in
order to detect and localise buried pipes, based on the regu-
larised version of ANMF. In the derivation, the noise has been
modeled by a SIRV process in order to take into account of
the heterogeneity of the data. Simulations allowed to observe
the impact of the regularisation on the PFA-threshold relation.
Application on real data showed the interest of the approach,
especially in detecting pipes having a weak response level.
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