ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization - Université Grenoble Alpes
Article Dans Une Revue Medical Image Analysis Année : 2023

ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization

Résumé

ImUnity is an original 2.5D deep-learning model designed for efficient and flexible MR image harmonization. A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D slices taken from different anatomical locations in each subject of the training database, as well as image contrast transformations for its training. It eventually generates ‘corrected’ MR images that can be used for various multi-center population studies. Using 3 open source databases (ABIDE, OASIS and SRPBS), which contain MR images from multiple acquisition scanner types or vendors and a large range of subjects ages, we show that ImUnity: (1) outperforms state-of-the-art methods in terms of quality of images generated using traveling subjects; (2) removes sites or scanner biases while improving patients classification; (3) harmonizes data coming from new sites or scanners without the need for an additional fine-tuning and (4) allows the selection of multiple MR reconstructed images according to the desired applications. Tested here on T1-weighted images, ImUnity could be used to harmonize other types of medical images.
Fichier principal
Vignette du fichier
2109.06756.pdf (5.6 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04116278 , version 1 (22-01-2024)

Identifiants

Citer

Stenzel Cackowski, Emmanuel Barbier, Michel Dojat, Thomas Christen. ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization. Medical Image Analysis, 2023, 88, pp.102799. ⟨10.1016/j.media.2023.102799⟩. ⟨hal-04116278⟩
62 Consultations
33 Téléchargements

Altmetric

Partager

More