On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data - Université Grenoble Alpes Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data

Résumé

The information geometry of the zero-mean tdistribution with Kronecker-product structured covariance matrix is derived. In particular, we obtain the Fisher information metric which shows that this geometry is identifiable to a product manifold of S ++ p (positive definite symmetric matrices) and sS ++ p (positive definite symmetric matrices with unit determinant). From this result, we obtain the geodesics and the Riemannian gradient. Finally, this geometry makes it possible to propose an on-line covariance matrix estimation algorithm well adapted to large datasets. Numerical experiments show that optimal results are obtained for a reasonable number of data.
Fichier principal
Vignette du fichier
kronecker_online.pdf (321.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03521267 , version 1 (11-01-2022)

Identifiants

Citer

Florent Bouchard, Arnaud Breloy, Ammar Mian, Guillaume Ginolhac. On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data. The 29th European Signal Processing Conference (EUSIPCO 2021), Aug 2021, Dublin, Ireland. pp.856-859, ⟨10.23919/EUSIPCO54536.2021.9616101⟩. ⟨hal-03521267⟩
49 Consultations
85 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More