Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Analysis of Graphomotor Tests with Machine Learning Algorithms for an Early and Universal Pre-Diagnosis of Dysgraphia

Abstract : Five to ten percent of school-aged children display dysgraphia, a neuro-motor disorder that causes difficulties in handwriting, which becomes a handicap in the daily life of these children. Yet, the diagnosis of dysgraphia remains tedious, subjective and dependent to the language besides stepping in late in the schooling. We propose a pre-diagnosis tool for dysgraphia using drawings called graphomotor tests. These tests are recorded using graphical tablets. We evaluate several machinelearning models and compare them to build this tool. A database comprising 305 children from the region of Grenoble, including 43 children with dysgraphia, has been established and diagnosed by specialists using the BHK test, which is the gold standard for the diagnosis of dysgraphia in France. We performed tests of classification by extracting, correcting and selecting features from the raw data collected with the tablets and achieved a maximum accuracy of 73% with cross-validation for three models. These promising results highlight the relevance of graphomotor tests to diagnose dysgraphia earlier and more broadly.
Liste complète des métadonnées

https://hal.univ-grenoble-alpes.fr/hal-03409232
Contributeur : Vincent Brault Connectez-vous pour contacter le contributeur
Soumis le : vendredi 29 octobre 2021 - 15:23:37
Dernière modification le : vendredi 1 avril 2022 - 03:53:41
Archivage à long terme le : : lundi 31 janvier 2022 - 09:33:11

Fichier

Devillaine2021analysis.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Louis Devillaine, Raphaël Lambert, Jérôme Boutet, Saifeddine Aloui, Vincent Brault, et al.. Analysis of Graphomotor Tests with Machine Learning Algorithms for an Early and Universal Pre-Diagnosis of Dysgraphia. Sensors, MDPI, 2021, 21 (21), pp.7026. ⟨10.3390/s21217026⟩. ⟨hal-03409232⟩

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

45