Valuation of Startups: A Machine Learning Perspective
Résumé
We address the problem of startup valuation from a machine learning perspective with a focus on European startups. More precisely, we aim to infer the valuation of startups corresponding to the funding rounds for which only the raised amount was announced. To this end, we mine Crunchbase, a well-established source of information on companies. We study the discrepancy between the properties of the funding rounds with and without the startup’s valuation announcement and show that the Domain Adaptation framework is suitable for this task. Finally, we propose a method that outperforms, by a large margin, the approaches proposed previously in the literature.