Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins? - Université Grenoble Alpes Accéder directement au contenu
Article Dans Une Revue Toxins Année : 2021

Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins?

Résumé

The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.

Dates et versions

hal-03355183 , version 1 (27-09-2021)

Identifiants

Citer

Guillaume Tetreau, Elena Andreeva, Anne-Sophie Banneville, Elke de Zitter, Jacques-Philippe Colletier. Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins?. Toxins, 2021, 13 (7), pp.441. ⟨10.3390/toxins13070441⟩. ⟨hal-03355183⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More